BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-10-2015, 03:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solid phase synthesis, NMR structure determination of ?-KTx3.8, its in silico docking to Kv1.x potassium channels, and electrophysiological analysis provide insights into toxin-channel selectivity.

Solid phase synthesis, NMR structure determination of ?-KTx3.8, its in silico docking to Kv1.x potassium channels, and electrophysiological analysis provide insights into toxin-channel selectivity.

Related Articles Solid phase synthesis, NMR structure determination of ?-KTx3.8, its in silico docking to Kv1.x potassium channels, and electrophysiological analysis provide insights into toxin-channel selectivity.

Toxicon. 2015 May 5;

Authors: Kohl B, Rothenberg I, Ali SA, Alam M, Seebohm G, Kalbacher H, Voelter W, Stoll R

Abstract
Animal venoms, such as those from scorpions, are a potent source for new pharmacological substances. In this study we have determined the structure of the ?-KTx3.8 (named as Bs6) scorpion toxin by multidimensional protonhomonuclear NMR spectroscopy and investigated its function by molecular dynamics (MD) simulations and electrophysiological measurements. Bs6 is a potent inhibitor of the Kv1.3 channel which plays an important role during the activation and proliferation of memory T-cells (TEM), which play an important role in autoimmune diseases. Therefore, it could be an interesting target for treatment of autoimmune diseases. In this study, Bs6 was synthesised by solid-phase synthesis and its three-dimensional (3D) structure has been determined. To gain a deeper insight into the interaction of Bs6 with different potassium channels like hKv1.1 and hKv1.3, the protein-protein complex was modelled based on known toxin-channel structures and tested for stability in MD simulations using GROMACS. The toxin-channel interaction was further analysed by electrophysiological measurements of different potassium channels like hKv1.3 and hKv7.1. As potassium channel inhibitors could play an important role to overcome autoimmune diseases like multiple sclerosis and type-1 diabetes mellitus, our data contribute to the understanding of the molecular mechanism of action and will ultimately help to develop new potent inhibitors in future.


PMID: 25953725 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis.
Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Related Articles Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQC-Based NMR Analysis. Chembiochem. 2014 Nov 18; Authors: Rauthu SR, Shiao TC, André S, Miller MC, Madej E, Mayo KH, Gabius HJ, Roy R Abstract The emerging significance of...
nmrlearner Journal club 0 11-20-2014 08:40 PM
[NMR paper] Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils. Related Articles Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils. Annu Rev Biophys. 2013 Mar 22; Authors: Comellas G, Rienstra CM Abstract Protein structure determination methods using magic-angle spinning solidstate nuclear magnetic resonance (MAS SSNMR) have experienced a remarkable...
nmrlearner Journal club 0 03-27-2013 03:33 PM
[NMR paper] An NMR investigation of the structure, function and role of the hERG channel selectivity filter in the long QT syndrome.
An NMR investigation of the structure, function and role of the hERG channel selectivity filter in the long QT syndrome. Related Articles An NMR investigation of the structure, function and role of the hERG channel selectivity filter in the long QT syndrome. Biochim Biophys Acta. 2013 Mar 5; Authors: Gravel AE, Arnold AA, Dufourc EJ, Marcotte I Abstract The human ether-a-go-go-related gene (hERG) voltage-gated K+ channels are located in heart cell membranes and hold a unique selectivity filter (SF) amino acid sequence (SVGFG) as compared...
nmrlearner Journal club 0 03-12-2013 07:09 PM
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ?
Revealing Protein Structures in Solid-Phase Peptide Synthesis by 13C Solid-State NMR: Evidence of Excessive Misfolding for Alzheimer’s ? Songlin Wang and Yoshitaka Ishii http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja212190z/aop/images/medium/ja-2011-12190z_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja212190z http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/6EE7uthrnLg
nmrlearner Journal club 0 01-31-2012 08:34 PM
Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR.
Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR. Incorporation of a Bioactive Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis To Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D (1)H NMR. J Med Chem. 2011 Feb 9; Authors: Singh A, Wilczynski A, Holder JR, Witek RM, Dirain ML, Xiang Z, Edison AS, Haskell-Luevano C By use of a solid-phase synthetic approach, a...
nmrlearner Journal club 0 02-11-2011 06:43 PM
[NMR paper] Saturation transfer difference (STD) 1H-NMR experiments and in silico docking experim
Saturation transfer difference (STD) 1H-NMR experiments and in silico docking experiments to probe the binding of N-acetylneuraminic acid and derivatives to Vibrio cholerae sialidase. Related Articles Saturation transfer difference (STD) 1H-NMR experiments and in silico docking experiments to probe the binding of N-acetylneuraminic acid and derivatives to Vibrio cholerae sialidase. Proteins. 2004 Aug 1;56(2):346-53 Authors: Haselhorst T, Wilson JC, Thomson RJ, McAtamney S, Menting JG, Coppel RL, von Itzstein M Saturation transfer difference...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] A novel potassium channel blocking toxin from the scorpion Pandinus imperator: A 1H N
A novel potassium channel blocking toxin from the scorpion Pandinus imperator: A 1H NMR analysis using a nano-NMR probe. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles A novel potassium channel blocking toxin from the scorpion Pandinus imperator: A 1H NMR analysis using a nano-NMR probe. Biochemistry. 1997 Mar 4;36(9):2649-58 Authors: Delepierre M, Prochnicka-Chalufour A, Possani LD The three-dimensional solution structure of a novel peptide, Pi 1, purified from the venom of the...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] A novel potassium channel blocking toxin from the scorpion Pandinus imperator: A 1H N
A novel potassium channel blocking toxin from the scorpion Pandinus imperator: A 1H NMR analysis using a nano-NMR probe. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles A novel potassium channel blocking toxin from the scorpion Pandinus imperator: A 1H NMR analysis using a nano-NMR probe. Biochemistry. 1997 Mar 4;36(9):2649-58 Authors: Delepierre M, Prochnicka-Chalufour A, Possani LD The three-dimensional solution structure of a novel peptide, Pi 1, purified from the venom of the...
nmrlearner Journal club 0 08-22-2010 03:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:16 AM.


Map