Sequence specific resonance assignment is the prerequisite for the NMR-based analysis of the conformational ensembles and their underlying dynamics of intrinsically disordered proteins. However, rapid solvent exchange in intrinsically disordered proteins often complicates assignment strategies based on HN-detection. Here we present a six-dimensional alpha proton detection-based automated projection spectroscopy (APSY) experiment for backbone assignment of intrinsically disordered proteins. The 6D HCACONCAH APSY correlates the six different chemical shifts, Hα(iÂ*â??Â*1), Cα(iÂ*â??Â*1), Câ?²(iÂ*â??Â*1), N(i), Cα(i) and Hα(i). Application to two intrinsically disordered proteins, 140-residue α-synuclein and a 352-residue isoform of Tau, demonstrates that the chemical shift information provided by the 6D HCACONCAH APSY allows efficient backbone resonance assignment of intrinsically disordered proteins.
Automated NMR resonance assignment strategy for RNA via the phosphodiester backbone based on high-dimensional through-bond APSY experiments
Automated NMR resonance assignment strategy for RNA via the phosphodiester backbone based on high-dimensional through-bond APSY experiments
Abstract
A fast, robust and reliable strategy for automated sequential resonance assignment for uniformly -labeled RNA via its phosphodiester backbone is presented. It is based on a series of high-dimensional through-bond APSY experiments: a 5D HCP-CCH COSY, a 4D H1â?²C1â?²CH TOCSY for ribose resonances, a 5D HCNCH for ribose-to-base connection, a 4D H6C6C5H5 TOCSY for pyrimidine resonances, and a 4D...
nmrlearner
Journal club
0
06-19-2014 10:21 PM
[NMR paper] Novel methods based on 13C detection to study intrinsically disordered proteins
Novel methods based on 13C detection to study intrinsically disordered proteins
Publication date: April 2014
Source:Journal of Magnetic Resonance, Volume 241</br>
Author(s): Isabella C. Felli , Roberta Pierattelli</br>
Intrinsically disordered proteins (IDPs) are characterized by highly flexible solvent exposed backbones and can sample many different conformations. These properties confer them functional advantages, complementary to those of folded proteins, which need to be characterized to expand our view of how protein structural and dynamic features affect...
nmrlearner
Journal club
0
03-22-2014 01:28 AM
Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins
Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins
Publication date: Available online 4 March 2014
Source:Journal of Magnetic Resonance</br>
Author(s): Veniamin Chevelkov , Birgit Habenstein , Antoine Loquet , Karin Giller , Stefan Becker , Adam Lange</br>
Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained...
nmrlearner
Journal club
0
03-04-2014 06:37 PM
An assignment of intrinsically disordered regions of proteins based on NMR structures
An assignment of intrinsically disordered regions of proteins based on NMR structures
January 2013
Publication year: 2013
Source:Journal of Structural Biology, Volume 181, Issue 1</br>
</br>
Intrinsically disordered proteins (IDPs) do not adopt stable three-dimensional structures in physiological conditions, yet these proteins play crucial roles in biological phenomena. In most cases, intrinsic disorder manifests itself in segments or domains of an IDP, called intrinsically disordered regions (IDRs), but fully disordered IDPs also exist. Although IDRs can be detected as...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
Abstract Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase...
nmrlearner
Journal club
0
02-21-2012 03:40 AM
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins
Abstract A four-dimensional (4D) APSY (automated projection spectroscopy)-HBCB(CG)CDHD experiment is presented. This 4D experiment correlates aromatic with aliphatic carbon and proton resonances from the same amino acid side chain of proteins in aqueous solution. It thus allows unambiguous sequence-specific assignment of aromatic amino acid ring signals based on backbone assignments. Compared to conventional 2D approaches, the inclusion of evolution periods on 1Hβ and 13Cδ...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Abstract Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing 15N, 13C� and 1HN spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially 15N and 13C� spins offer superior chemical shift dispersion in comparison to 13Cα and 13Cβ spins. However, HN-detected experiments...
nmrlearner
Journal club
0
01-29-2011 05:31 AM
HA-detected experiments for the backbone assignment of intrinsically disordered prote
Abstract We propose a new alpha proton detection based approach for the sequential assignment of natively unfolded proteins. The proposed protocol superimposes on following features: HA-detection (1) enables assignment of natively unfolded proteins at any pH, i.e., it is not sensitive to rapid chemical exchange undergoing in natively unfolded proteins even at moderately high pH. (2) It allows straightforward assignment of proline-rich polypeptides without additional proline-customized experiments. (3) It offers more streamlined and less ambiguous assignment based on solely intraresidual...