[NMR paper] Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis.
Related ArticlesSite-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis.
J Biomol NMR. 2016 Jan 6;
Authors: Yang Y, Huang F, Huber T, Su XC
Abstract
Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an ?-helix that possesses solvent exposed residues in positions i and i*+*3, where i is the residue to be mutated to cysteine, i*+*3 is Gln or Glu or i*-*4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.
PMID: 26732873 [PubMed - as supplied by publisher]
Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis
Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis
Abstract
Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a...
nmrlearner
Journal club
0
01-06-2016 09:48 AM
Site-specific analysis of heteronuclear Overhauser effects in microcrystalline proteins
Site-specific analysis of heteronuclear Overhauser effects in microcrystalline proteins
Abstract
Relaxation parameters such as longitudinal relaxation are susceptible to artifacts such as spin diffusion, and can be affected by paramagnetic impurities as e.g. oxygen, which make a quantitative interpretation difficult. We present here the site-specific measurement of 13C and 15N heteronuclear rates in an immobilized protein. For methyls, a strong effect is expected due to the three-fold rotation of the methyl group. Quantification of the 13C...
nmrlearner
Journal club
0
07-03-2014 06:04 AM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 215</br>
Claudio Luchinat, Malini Nagulapalli, Giacomo Parigi, Luca Sgheri</br>
Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively placed...
nmrlearner
Journal club
0
03-09-2012 09:16 AM
Paramagnetic tagging for protein structure and dynamics analysis
Paramagnetic tagging for protein structure and dynamics analysis
Publication year: 2011
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 58, Issues 1–2</br>
Peter H.J. Keizers, Marcellus Ubbink</br>
</br>
</br></br>
nmrlearner
Journal club
0
03-09-2012 09:16 AM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 30 December 2011</br>
Claudio*Luchinat, Malini*Nagulapalli, Giacomo*Parigi, Luca*Sgheri</br>
Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively...
nmrlearner
Journal club
0
12-31-2011 10:40 AM
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy.
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy.
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy.
Chem Commun (Camb). 2011 May 27;
Authors: Swarbrick JD, Ung P, Su XC, Maleckis A, Chhabra S, Huber T, Otting G, Graham B
Attachment of two nitrilotriacetic acid-based ligands to a protein ?-helix in an i, i + 4 configuration produces an octadentate chelating motif that is able to bind paramagnetic...
nmrlearner
Journal club
0
05-28-2011 06:50 PM
[NMR paper] NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies
NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates.
Biochemistry. 1996 Jul 30;35(30):9637-46
Authors: Scheuring J, Fischer M, Cushman M, Lee J, Bacher A,...
nmrlearner
Journal club
0
08-22-2010 02:20 PM
Paramagnetic tagging for protein structure and dynamics analysis
Paramagnetic tagging for protein structure and dynamics analysis
Publication year: 2010
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 12 August 2010</br>
Peter H.J., Keizers , Marcellus, Ubbink</br>
More...