BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-11-2015, 04:19 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl 13C NMR relaxation.

Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl 13C NMR relaxation.

Related Articles Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl 13C NMR relaxation.

J Am Chem Soc. 2015 Feb 10;

Authors: Wallerstein J, Weininger U, Khan MA, Linse S, Akke M

Abstract
Proton transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on 13C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3)×106 s-1 and kon in the range (0.6-300)×109 M-1s-1, which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between logkon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state.


PMID: 25665463 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection
Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection Abstract Protein dynamics on the microsecondâ??millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the...
nmrlearner Journal club 0 06-19-2014 10:21 PM
[NMR paper] The Involvement of Amino Acid Side Chains in Shielding the Nickel Coordination Site: An NMR Study.
The Involvement of Amino Acid Side Chains in Shielding the Nickel Coordination Site: An NMR Study. The Involvement of Amino Acid Side Chains in Shielding the Nickel Coordination Site: An NMR Study. Molecules. 2013;18(10):12396-12414 Authors: Medici S, Peana M, Nurchi VM, Zoroddu MA Abstract Coordination of proteins and peptides to metal ions is known to affect their properties, often by a change in their structural organization. Side chains of the residues directly involved in metal binding or very close to the coordination centre...
nmrlearner Journal club 0 10-11-2013 10:43 AM
Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected 13C CPMG relaxation dispersion
Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected 13C CPMG relaxation dispersion Abstract Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding...
nmrlearner Journal club 0 07-30-2012 07:42 AM
13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy
13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy Abstract Aromatic side chains are prevalent in protein binding sites, perform functional roles in enzymatic catalysis, and form an integral part of the hydrophobic core of proteins. Thus, it is of great interest to probe the conformational dynamics of aromatic side chains and its response to biologically relevant events. Indeed, measurements of 13C relaxation rates in aromatic moieties have a long history in biomolecular NMR, primarily in the context of...
nmrlearner Journal club 0 07-05-2012 04:13 AM
On the calculation of 3Jαβ-coupling constants for side chains in proteins
On the calculation of 3Jαβ-coupling constants for side chains in proteins Abstract Structural knowledge about proteins is mainly derived from values of observables, measurable in NMR spectroscopic or X-ray diffraction experiments, i.e. absorbed or scattered intensities, through theoretically derived relationships between structural quantities such as atom positions or torsional angles on the one hand and observable quantities such as squared structure factor amplitudes, NOE intensities or 3 J-coupling constants on the other. The standardly used relation connecting 3 J-couplings...
nmrlearner Journal club 0 06-25-2012 04:41 AM
[NMR paper] Unfolding kinetics of tryptophan side chains in the dimerization and hinge regions of
Unfolding kinetics of tryptophan side chains in the dimerization and hinge regions of HIV-I protease tethered dimer by real time NMR spectroscopy. Related Articles Unfolding kinetics of tryptophan side chains in the dimerization and hinge regions of HIV-I protease tethered dimer by real time NMR spectroscopy. Biochem Biophys Res Commun. 2000 Mar 16;269(2):387-92 Authors: Panchal SC, Hosur RV HIV I protease has been the target of extensive and variety of investigations in recent years because of its importance in the AIDS viral life cycle. We...
nmrlearner Journal club 0 11-18-2010 09:15 PM
Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membra
Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Related Articles Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Protein Sci. 2010 Nov 15; Authors: Shi P, Wang H, Xi Z, Shi C, Xiong Y, Tian C Site-specific (19)F chemical shift and side chain relaxation analysis can be applied on large size proteins. Here, one dimensional (19)F spectra and T(1), T(2) relaxation data were acquired...
nmrlearner Journal club 0 11-17-2010 05:49 PM
Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analy
Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analysis of Human Vinexin SH3 Domain using a Genetically Encoded (15)N/(19)F-Labeled Unnatural Amino Acid. Related Articles Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analysis of Human Vinexin SH3 Domain using a Genetically Encoded (15)N/(19)F-Labeled Unnatural Amino Acid. Biochem Biophys Res Commun. 2010 Oct 11; Authors: Shi P, Xi Z, Wang H, Shi C, Xiong Y, Tian C SH3 is a ubiquitous domain mediating protein-protein interactions....
nmrlearner Journal club 0 10-16-2010 03:56 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:47 PM.


Map