BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-18-2016, 09:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase

Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase

Abstract

Proteinā??ligand interaction is often characterized using polarization transfer by the intermolecular nuclear Overhauser effect (NOE). For such NOE experiments, hyperpolarization of nuclear spins presents the opportunity to increase the spin magnetization, which is transferred, by several orders of magnitude. Here, folic acid, a ligand of dihydrofolate reductase (DHFR), was hyperpolarized on 1H spins using dissolution dynamic nuclear polarization (D-DNP). Mixing hyperpolarized ligand with protein resulted in observable increases in protein 1H signal predominantly in the methyl group region of the spectra. Using 13C single quantum selection in a series of one-dimensional spectra, the carbon chemical shift ranges of the corresponding methyl groups can be elucidated. Signals observed in these hyperpolarized spectra could be confirmed using 3D isotope filtered NOESY spectra, although the hyperpolarized spectra were obtained in single scans. By further correlating the signal intensities observed in the D-DNP experiments with the occurrence of short distances in the crystal structure of the proteinā??ligand complex, the observed methyl proton signals could be matched to the chemical shifts of six amino acids in the active site of DHFR-folic acid binary complex. These data demonstrate that 13C chemical shift selection of protein resonances, combined with the intrinsic selectivity towards magnetization originating from the initially hyperpolarized spins, can be used for site specific characterization of proteinā??ligand interactions.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Polarization Transfer from Ligands Hyperpolarized by Dissolution Dynamic Nuclear Polarization for Screening in Drug Discovery
From The DNP-NMR Blog: Polarization Transfer from Ligands Hyperpolarized by Dissolution Dynamic Nuclear Polarization for Screening in Drug Discovery Min, H., G. Sekar, and C. Hilty, Polarization Transfer from Ligands Hyperpolarized by Dissolution Dynamic Nuclear Polarization for Screening in Drug Discovery. ChemMedChem, 2015. 10(9): p. 1559-63. http://www.ncbi.nlm.nih.gov/pubmed/26315550
nmrlearner News from NMR blogs 0 10-05-2015 07:08 PM
NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions.
NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand...
nmrlearner Journal club 0 07-13-2011 06:42 PM
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi200067t/aop/images/medium/bi-2011-00067t_0002.gif Biochemistry DOI: 10.1021/bi200067t http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/sLQe7ipMThM More...
nmrlearner Journal club 0 04-15-2011 01:40 AM
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase.
Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase. Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase. Bioorg Med Chem. 2010 Dec 15;18(24):8485-92 Authors: Batruch I, Javasky E, Brown ED, Organ MG, Johnson PE Isothermal titration calorimetry (ITC) was used to determine the thermodynamic driving force for inhibitor binding to the enzyme dihydrofolate reductase (DHFR) from Escherichia coli. 1,4-Bis-{sulfanylmethyl}-3,6-dimethyl-benzene (1) binds DHFR:NADPH with a K(d) of 13±5 nM while the...
nmrlearner Journal club 0 03-09-2011 02:20 PM
[NMR paper] Dihydrofolate reductase: sequential resonance assignments using 2D and 3D NMR and sec
Dihydrofolate reductase: sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution. Related Articles Dihydrofolate reductase: sequential resonance assignments using 2D and 3D NMR and secondary structure determination in solution. Biochemistry. 1991 Jun 25;30(25):6330-41 Authors: Carr MD, Birdsall B, Frenkiel TA, Bauer CJ, Jimenez-Barbero J, Polshakov VI, McCormick JE, Roberts GC, Feeney J Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential 1H and 15N resonance...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] Methotrexate binds in a non-productive orientation to human dihydrofolate reductase i
Methotrexate binds in a non-productive orientation to human dihydrofolate reductase in solution, based on NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Methotrexate binds in a non-productive orientation to human dihydrofolate reductase in solution, based on NMR spectroscopy. FEBS Lett. 1991 Jun 3;283(2):267-9 Authors: Stockman BJ, Nirmala NR, Wagner G, Delcamp TJ, DeYarman MT, Freisheim JH Dihydrofolate reductase (DHFR) is an intracellular target...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N an
The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N and 31P NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N and 31P NMR study. FEBS Lett. 1991 May 20;283(1):44-6 Authors: Huang FY, Yang QX, Huang TH, Gelbaum L, Kuyper LF We have employed 15N and 31P NMR techniques to characterize the conformations of trimethoprim (TMP)/E. coli dihydrofolate...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] NMR studies of interactions of ligands with dihydrofolate reductase.
NMR studies of interactions of ligands with dihydrofolate reductase. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR studies of interactions of ligands with dihydrofolate reductase. Biochem Pharmacol. 1990 Jul 1;40(1):141-52 Authors: Feeney J NMR spectroscopy is a useful technique for studying interactions, conformations and dynamic processes within ligand-protein complexes. Several examples of the application of the method to studies of complexes of anti-folate...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:22 PM.


Map