BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-14-2010, 04:19 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Site-specific labeling of nucleotides for making RNA for high resolution NMR studies

Abstract Escherichia coli (E. coli) is a versatile organism for making nucleotides labeled with stable isotopes (13C, 15N, and/or 2H) for structural and molecular dynamics characterizations. Growth of a mutant E. coli strain deficient in the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (K10-1516) on 2-13C-glycerol and 15N-ammonium sulfate in Studier minimal medium enables labeling at sites useful for NMR spectroscopy. However, 13C-sodium formate combined with 13C-2-glycerol in the growth media adds labels to new positions. In the absence of labeled formate, both C5 and C6 positions of the pyrimidine rings are labeled with minimal multiplet splitting due to 1JC5C6 scalar coupling. However, the C2/C8 sites within purine rings and the C1â?²/C3â?²/C5â?² positions within the ribose rings have reduced labeling. Addition of 13C-labeled formate leads to increased labeling at the base C2/C8 and the ribose C1â?²/C3â?²/C5â?² positions; these new specific labels result in two- to three-fold increase in the number of resolved resonances. This use of formate and 15N-ammonium sulfate promises to extend further the utility of these alternate site specific labels to make labeled RNA for downstream biophysical applications such as structural, dynamics and functional studies of interesting biologically relevant RNAs.
  • Content Type Journal Article
  • DOI 10.1007/s10858-010-9405-0
  • Authors
    • T. Kwaku Dayie, University of Maryland Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization 1115 Biomolecular Sciences Bldg (#296) College Park MD 20742-3360 USA
    • Chandar S. Thakur, University of Maryland Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization 1115 Biomolecular Sciences Bldg (#296) College Park MD 20742-3360 USA

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR
Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR Abstract Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1â?² and C5â?² with...
nmrlearner Journal club 0 11-30-2011 10:45 PM
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment Abstract Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives,...
nmrlearner Proteins 0 01-22-2011 03:46 AM
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR. 2011 Jan 19; Authors: Fan Y, Shi L, Ladizhansky V, Brown LS Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties...
nmrlearner Journal club 0 01-21-2011 01:22 AM
Site-specific labeling of proteins with NMR-active unnatural amino acids
Site-specific labeling of proteins with NMR-active unnatural amino acids Abstract A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Biosynthetic site-specific (13) C labeling of the light-harvesting 2 protein complex:
Biosynthetic site-specific (13) C labeling of the light-harvesting 2 protein complex: a model for solid state NMR structure determination of transmembrane proteins. Related Articles Biosynthetic site-specific (13) C labeling of the light-harvesting 2 protein complex: a model for solid state NMR structure determination of transmembrane proteins. J Biomol NMR. 2004 Nov;30(3):267-74 Authors: van Gammeren AJ, Hulsbergen FB, Hollander JG, de Groot HJ Partly biosynthetic site-directed isotopically (13)C enriched photosynthetic light-harvesting...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and ir
Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and iron(III)-superoxide dismutase from Escherichia coli. Related Articles Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and iron(III)-superoxide dismutase from Escherichia coli. J Biomol NMR. 2000 Aug;17(4):311-22 Authors: Sorkin DL, Miller AF We have developed and employed multiple amino acid-specific isotopic labeling schemes to obtain definitive assignments for active site 1H NMR resonances of iron(II)- and iron(III)-superoxide...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-N
Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-NMR titration of Trp 62-lysozyme. Related Articles Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-NMR titration of Trp 62-lysozyme. J Biochem. 1991 Aug;110(2):295-300 Authors: Nakazawa T, Sakiyama F The indole C-2(delta 1) carbon of Trp 62 in hen egg-white lysozyme was selectively labeled with 13C through a series of reactions involving N'-formylkynurenine 62-lysozyme with K13CN, NaBH4-reduction, and acid-catalyzed...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-N
Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-NMR titration of Trp 62-lysozyme. Related Articles Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-NMR titration of Trp 62-lysozyme. J Biochem. 1991 Aug;110(2):295-300 Authors: Nakazawa T, Sakiyama F The indole C-2(delta 1) carbon of Trp 62 in hen egg-white lysozyme was selectively labeled with 13C through a series of reactions involving N'-formylkynurenine 62-lysozyme with K13CN, NaBH4-reduction, and acid-catalyzed...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:21 PM.


Map