BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-31-2017, 12:14 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,787
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Site-selective 13 C labeling of histidine and tryptophan using ribose

Site-selective 13 C labeling of histidine and tryptophan using ribose

Abstract

Experimental studies on protein dynamics at atomic resolution by NMR-spectroscopy in solution require isolated 1H-X spin pairs. This is the default scenario in standard 1H-15N backbone experiments. Side chain dynamic experiments, which allow to study specific local processes like proton-transfer, or tautomerization, require isolated 1H-13C sites which must be produced by site-selective 13C labeling. In the most general way this is achieved by using site-selectively 13C-enriched glucose as the carbon source in bacterial expression systems. Here we systematically investigate the use of site-selectively 13C-enriched ribose as a suitable precursor for 13C labeled histidines and tryptophans. The 13C incorporation in nearly all sites of all 20 amino acids was quantified and compared to glucose based labeling. In general the ribose approach results in more selective labeling. 1-13C ribose exclusively labels His δ2 and Trp δ1 in aromatic side chains and helps to resolve possible overlap problems. The incorporation yield is however only 37% in total and 72% compared to yields of 2-13C glucose. A combined approach of 1-13C ribose and 2-13C glucose maximizes 13C incorporation to 75% in total and 150% compared to 2-13C glucose only. Further histidine positions β, α and CO become significantly labeled at around 50% in total by 3-, 4- or 5-13C ribose. Interestingly backbone CO of Gly, Ala, Cys, Ser, Val, Phe and Tyr are labeled at 40â??50% in total with 3-13C ribose, compared to 5% and below for 1-13C and 2-13C glucose. Using ribose instead of glucose as a source for site-selective 13C labeling enables a very selective labeling of certain positions and thereby expanding the toolbox for customized isotope labeling of amino-acids.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Site-selective 13 C labeling of proteins using erythrose
Site-selective 13 C labeling of proteins using erythrose Abstract NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with 13C and/or 1H, which is achieved in the most general way by using site-selectively 13C-enriched glucose (1- and 2-13C) as the...
nmrlearner Journal club 0 03-01-2017 04:13 AM
[NMR paper] Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR.
From Mendeley Biomolecular NMR group: Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR. Journal of biomolecular NMR (2012). Volume: 52, Issue: 2. Pages: 103-14. Chandar S Thakur, Yiling Luo, Bin Chen, Nadukkudy V Eldho, T Kwaku Dayie et al. Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR.
From Mendeley Biomolecular NMR group: Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR. Journal of biomolecular NMR (2012). Volume: 52, Issue: 2. Pages: 103-14. Chandar S Thakur, Yiling Luo, Bin Chen, Nadukkudy V Eldho, T Kwaku Dayie et al. Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at...
nmrlearner Journal club 0 01-09-2013 04:20 PM
[NMR paper] Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR.
From Mendeley Biomolecular NMR group: Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR. Journal of biomolecular NMR (2012). Volume: 52, Issue: 2. Pages: 103-14. Chandar S Thakur, Yiling Luo, Bin Chen, Nadukkudy V Eldho, T Kwaku Dayie et al. Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at...
nmrlearner Journal club 0 10-19-2012 10:22 AM
[NMR paper] Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR.
From Mendeley Biomolecular NMR group: Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR. Journal of biomolecular NMR (2012). Volume: 52, Issue: 2. Pages: 103-14. Chandar S Thakur, Yiling Luo, Bin Chen, Nadukkudy V Eldho, T Kwaku Dayie et al. Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at...
nmrlearner Journal club 0 10-12-2012 09:58 AM
[NMR paper] Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR.
From Mendeley Biomolecular NMR group: Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR. Journal of biomolecular NMR (2012). Volume: 52, Issue: 2. Pages: 103-14. Chandar S Thakur, Yiling Luo, Bin Chen, Nadukkudy V Eldho, T Kwaku Dayie et al. Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at...
nmrlearner Journal club 0 08-24-2012 08:01 PM
Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR
Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR Abstract Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1â?² and C5â?² with...
nmrlearner Journal club 0 11-30-2011 10:45 PM
[NMR paper] Site-selective labeling strategies for screening by NMR.
Site-selective labeling strategies for screening by NMR. Related Articles Site-selective labeling strategies for screening by NMR. Comb Chem High Throughput Screen. 2002 Dec;5(8):623-30 Authors: Weigelt J, Wikström M, Schultz J, van Dongen MJ NMR based screening has become an important tool in the pharmaceutical industry. Methods that provide information on the location of small molecule binding sites on the surface of a drug target (e. g. SAR-by-NMR and related techniques) are of particular interest. In order to extend the applicability of...
nmrlearner Journal club 0 11-24-2010 08:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:55 AM.


Map