[NMR paper] Site-Resolved Backbone and Side-Chain Intermediate Dynamics in a Carbohydrate-Binding Module Protein Studied by Magic-Angle Spinning NMR Spectroscopy.
Site-Resolved Backbone and Side-Chain Intermediate Dynamics in a Carbohydrate-Binding Module Protein Studied by Magic-Angle Spinning NMR Spectroscopy.
Chemistry. 2015 Jun 12;
Authors: Ivanir-Dabora H, Nimerovsky E, Madhu PK, Goldbourt A
Abstract
Magic-angle spinning solid-state NMR spectroscopy has been applied to study the dynamics of CBM3b-Cbh9A from Clostridium thermocellum (ctCBM3b), a cellulose binding module protein. This 146-residue protein has a nine-stranded ?-sandwich fold, in which 35 % of the residues are in the ?-sheet and the remainder are composed of loops and turns. Dynamically averaged (1) H-(13) C dipolar coupling order parameters were extracted in a site-specific manner by using a pseudo-three-dimensional constant-time recoupled separated-local-field experiment (dipolar-chemical shift correlation experiment; DIPSHIFT). The backbone-C? and C? order parameters indicate that the majority of the protein, including turns, is rigid despite having a high content of loops; this suggests that restricted motions of the turns stabilize the loops and create a rigid structure. Water molecules, located in the crystalline interface between protein units, induce an increased dynamics of the interface residues thereby lubricating crystal water-mediated contacts, whereas other crystal contacts remain rigid.
PMID: 26073185 [PubMed - as supplied by publisher]
[NMR paper] Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png Related Articles Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling.
PLoS One. 2015;10(4):e0122714
Authors: Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T,...
nmrlearner
Journal club
0
04-11-2015 12:04 AM
[NMR paper] Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
Acc Chem Res. 2013 Feb 13;
Authors: Yan S, Suiter CL, Hou G, Zhang H, Polenova T
Abstract
In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral...
nmrlearner
Journal club
0
02-14-2013 02:37 PM
[NMR paper] Solution Structure, Dynamics and Binding Studies of a Family 11 Carbohydrate-Binding Module from Clostridium thermocellum (CtCBM11).
Solution Structure, Dynamics and Binding Studies of a Family 11 Carbohydrate-Binding Module from Clostridium thermocellum (CtCBM11).
Related Articles Solution Structure, Dynamics and Binding Studies of a Family 11 Carbohydrate-Binding Module from Clostridium thermocellum (CtCBM11).
Biochem J. 2013 Jan 29;
Authors: Viegas A, Sardinha J, Freire F, Duarte DF, Carvalho AL, Fontes CM, Romão MJ, Macedo AL, Cabrita EJ
Abstract
Non-catalytic cellulosomal carbohydrate-binding modules (CBMs) are responsible for increasing the catalytic efficiency of...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
Multidimensional Magic Angle Spinning NMR Spectroscopy for Site-Resolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids
Multidimensional Magic Angle Spinning NMR Spectroscopy for Site-Resolved Measurement of Proton Chemical Shift Anisotropy in Biological Solids
Guangjin Hou, Sivakumar Paramasivam, Si Yan, Tatyana Polenova and Alexander J. Vega
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja3084972/aop/images/medium/ja-2012-084972_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja3084972
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/y3Jt7S8MwHM
nmrlearner
Journal club
0
01-22-2013 09:14 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
J Am Chem Soc. 2010 Dec 27;
Authors: Esadze A, Li DW, Wang T, Bru?schweiler R, Iwahara J
Despite their importance in macromolecular interactions and functions, the dynamics of lysine side-chain amino groups in proteins are not well understood. In this study, we have developed the methodology for the investigations of the dynamics...
nmrlearner
Journal club
0
12-29-2010 04:04 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Alexandre Esadze, Da-Wei Li, Tianzhi Wang, Rafael Bru?schweiler and Junji Iwahara
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107847d/aop/images/medium/ja-2010-07847d_0007.gif
Journal of the American Chemical Society
DOI: 10.1021/ja107847d
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/iFwgRBt-zto
nmrlearner
Journal club
0
12-28-2010 05:27 AM
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
J Am Chem Soc. 2005 Sep 21;127(37):12965-74
Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Related Articles Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
J Am Chem Soc. 2005 Aug 31;127(34):11946-7
Authors: Wylie BJ, Franks WT, Graesser DT, Rienstra CM
In this Communication, we introduce a 3D magic-angle spinning recoupling experiment that correlates chemical shift...