BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-26-2014, 05:46 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.

Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.

Related Articles Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.

J Biol Chem. 2014 Feb 28;289(9):6212-24

Authors: Yang C, Harrison C, Jin ES, Chuang DT, Sherry AD, Malloy CR, Merritt ME, DeBerardinis RJ

Abstract
Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of (13)C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized (13)C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined (13)C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-(13)C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-(13)C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[(13)C]O3(-) and [1-(13)C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-(13)C]pyruvate. Quantitation of hyperpolarized H[(13)C]O3(-) provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[(13)C]O3(-) appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-(13)C]pyruvate metabolism, enhancing exchanges with [1-(13)C]lactate and suppressing H[(13)C]O3(-) formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining (13)C isotopomer analyses and dynamic hyperpolarized (13)C spectroscopy may enable quantitative flux measurements in living tumors.


PMID: 24415759 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Reproducibility study for free-breathing measurements of pyruvate metabolism using hyperpolarized 13C in the heart
From The DNP-NMR Blog: Reproducibility study for free-breathing measurements of pyruvate metabolism using hyperpolarized 13C in the heart Lau, A.Z., et al., Reproducibility study for free-breathing measurements of pyruvate metabolism using hyperpolarized (13) C in the heart. Magn Reson Med, 2013. 69(4): p. 1063-71. http://www.ncbi.nlm.nih.gov/pubmed/22760647
nmrlearner News from NMR blogs 0 03-17-2014 07:23 PM
[Question from NMRWiki Q&A forum] Sensitivity gain by utilizing steady state polarization
Sensitivity gain by utilizing steady state polarization What do we exactly mean by "utilizing steady state polarization" to gain sensitivity in an experiment?...I know that steady state should be achieved before the start of acquisition which means, in a way, it is already being used for 1H,13C/15N(isn't it?)...I am lost in understanding this concept!...also, how/why does it differ in standard pulse sequences and spin state selective coherence transfer experiments? Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 08-05-2013 09:06 AM
[NMR paper] Protein dynamics in living cells studied by in-cell NMR spectroscopy.
Protein dynamics in living cells studied by in-cell NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Protein dynamics in living cells studied by in-cell NMR spectroscopy. FEBS Lett. 2013 Jan 11; Authors: Li C, Liu M Abstract Most proteins function in cells where protein concentrations can reach 400g/l. However, most quantitative studies of protein properties are performed in idealized, dilute conditions. Recently developed in-cell NMR techniques...
nmrlearner Journal club 0 02-03-2013 10:22 AM
Protein dynamics in living cells studied by in-cell NMR spectroscopy
Protein dynamics in living cells studied by in-cell NMR spectroscopy Available online 11 January 2013 Publication year: 2013 Source:FEBS Letters</br> </br> Most proteins function in cells where protein concentrations can reach 400g/l. However, most quantitative studies of protein properties are performed in idealized, dilute conditions. Recently developed in-cell NMR techniques can provide protein structure and other biophysical properties inside living cells at atomic resolution. Here we review how protein dynamics, including global and internal motions have been...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Watching protein structure at work in living cells using NMR spectroscopy
Watching protein structure at work in living cells using NMR spectroscopy December 2012 Publication year: 2012 Source:Current Opinion in Chemical Biology, Volume 16, Issues 5–6</br> </br> Isotope-assisted multi-dimensional NMR spectroscopy can now be applied to proteins inside living cells. The technique, called in-cell NMR, aims to investigate the structures, interactions and dynamics of proteins under their native conditions, ideally at an atomic resolution. The application has begun with bacterial cells but has now expanded to mammalian cultured cells, such as HeLa...
nmrlearner Journal club 0 02-03-2013 10:13 AM
On-Cell MAS NMR: PhysiologicalClues from Living Cells
On-Cell MAS NMR: PhysiologicalClues from Living Cells Giorgia Zandomeneghi, Karin Ilg, Markus Aebi and Beat H. Meier http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja307467p/aop/images/medium/ja-2012-07467p_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja307467p http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/PBl2HVolQkY
nmrlearner Journal club 0 10-15-2012 10:49 PM
STD and trNOESY NMR study of receptor-ligand interactions in living cancer cells.
STD and trNOESY NMR study of receptor-ligand interactions in living cancer cells. STD and trNOESY NMR study of receptor-ligand interactions in living cancer cells. Chembiochem. 2011 Mar 21;12(5):695-9 Authors: Potenza D, Vasile F, Belvisi L, Civera M, Araldi EM
nmrlearner Journal club 0 07-19-2011 07:52 PM
13C direct-detection biomolecular NMR spectroscopy in living cells.
13C direct-detection biomolecular NMR spectroscopy in living cells. 13C direct-detection biomolecular NMR spectroscopy in living cells. Angew Chem Int Ed Engl. 2011 Mar 1;50(10):2339-41 Authors: Bertini I, Felli IC, Gonnelli L, Kumar M V V, Pierattelli R
nmrlearner Journal club 0 06-18-2011 01:10 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:52 PM.


Map