Publication date: Available online 29 May 2015 Source:Journal of Magnetic Resonance
Author(s): Sharon Ruthstein , Ming Ji , Byong-kyu Shin , Sunil Saxena
Double quantum coherence (DQC) ESR is a sensitive method to measure magnetic dipolar interactions between spin labels. However, the DQC experiment on Cu2+ centers presents a challenge at X-band. The Cu2+ centers are usually coordinated to histidine residues in proteins. The electron–nuclear interaction between the Cu2+ ion and the remote nitrogen in the imidazole ring can interfere with the electron–electron dipolar interaction. Herein, we report on a modified DQC experiment that has the advantage of reduced contributions from electron–nuclear interactions, which enhances the resolution of the DQC signal to the electron–electron dipolar modulations. The modified pulse-sequence is verified on Cu2+–NO system in a polyalanine-based peptide and on a coupled Cu2+ system in a polyproline-based peptide. The modified DQC data were compared with the DEER data and good agreement was found. Graphical abstract
[NMR paper] Spatially Selective Heteronuclear Multiple-Quantum Coherence Spectroscopy for Biomolecular NMR Studies.
Spatially Selective Heteronuclear Multiple-Quantum Coherence Spectroscopy for Biomolecular NMR Studies.
Related Articles Spatially Selective Heteronuclear Multiple-Quantum Coherence Spectroscopy for Biomolecular NMR Studies.
Chemphyschem. 2014 Apr 30;
Authors: Sathyamoorthy B, Parish DM, Montelione GT, Xiao R, Szyperski T
Abstract
Spatially selective heteronuclear multiple-quantum coherence (SS HMQC) NMR spectroscopy is developed for solution studies of proteins. Due to "time-staggered" acquisitioning of free induction decays...
nmrlearner
Journal club
0
05-03-2014 10:42 PM
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy
Abstract Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743â??1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent...
nmrlearner
Journal club
0
02-11-2012 10:31 AM
[U. of Ottawa NMR Facility Blog] Heteronuclear Double Quantum Filters
Heteronuclear Double Quantum Filters
Double quantum filters are used to filter out single quantum magnetization and allow the passage of double quantum magnetization. In the proton observe heteronuclear case, the double quantum filter (like the BIRD filter) allows the selective observation of the weak satellite signals from protons coupled to dilute spin I = 1/2 X nuclei (e.g. X = 13C, 15N, 29Si ....) but rejects the strong singlets from the uncoupled protons in the vicinity of 12C, self decoupled 14N, and 28Si . The figure below illustrates the heteronuclear double quantum filter...
Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins
Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 3 February 2011</br>
Monika, Bayrhuber , Roland, Riek</br>
Sensitivity enhancement in liquid state nuclear magnetic resonance (NMR) triple resonance experiments for the sequential assignment of proteins is important for the investigation of large proteins or protein complexes. We present here the 3D TROSY-MQ/CRINEPT-HN(CO)CA which makes...
nmrlearner
Journal club
0
02-04-2011 07:03 AM
A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy.
A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy.
A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy.
Anal Bioanal Chem. 2011 Jan 11;
Authors: Tsiafoulis CG, Exarchou V, Tziova PP, Bairaktari E, Gerothanassis IP, Troganis AN
The rapid and accurate determination of specific metabolites present in biofluids is a very demanding task which is essential...
nmrlearner
Journal club
0
01-12-2011 11:11 AM
[NMR paper] Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy.
Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy.
Related Articles Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy.
Annu Rev Phys Chem. 2003;54:531-71
Authors: Drobny GP, Long JR, Karlsson T, Shaw W, Popham J, Oyler N, Bower P, Stringer J, Gregory D, Mehta M, Stayton PS
Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Removal of zero-quantum coherence in protein NMR spectra using SESAM decoupling and s
Removal of zero-quantum coherence in protein NMR spectra using SESAM decoupling and suppression of decoupling sidebands.
Related Articles Removal of zero-quantum coherence in protein NMR spectra using SESAM decoupling and suppression of decoupling sidebands.
J Magn Reson B. 1996 Feb;110(2):219-24
Authors: Weigelt J, Hammarstroem A, Bermel W, Otting G