Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.
J Magn Reson. 2011 Aug 30;
Authors: Qiang W
Abstract
We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the indirect dimension, i.e. the acquisition number decreases as a function of the evolution time (t1) in the indirect dimension. For a beta amyloid (A?) fibril sample, we observed overall 40-50% signal enhancement by measuring the cross peak volume, while the cross peak linewidths remained comparable to the linewidths obtained by regular sampling and processing strategies. Both the linear and Gaussian decay functions for the acquisition numbers result in similar percentage of increment in signal. In addition, we demonstrated that this sampling approach can be applied with different dipolar recoupling approaches such as radiofrequency assisted diffusion (RAD) and finite-pulse radio-frequency-driven recoupling (fpRFDR). This sampling scheme is especially suitable for the sensitivity-limited samples which require long signal averaging for each t1 point, for instance the biological membrane proteins where only a small fraction of the sample is isotopically labeled.
PMID: 21930405 [PubMed - as supplied by publisher]
(1)H-Detected (13)C Photo-CIDNP as a Sensitivity Enhancement Tool in Solution NMR.
(1)H-Detected (13)C Photo-CIDNP as a Sensitivity Enhancement Tool in Solution NMR.
(1)H-Detected (13)C Photo-CIDNP as a Sensitivity Enhancement Tool in Solution NMR.
J Am Chem Soc. 2011 May 6;
Authors: Lee JH, Sekhar A, Cavagnero S
NMR is a powerful yet intrinsically insensitive technique. The applicability of NMR to chemical and biological systems would be substantially extended by new approaches going beyond current signal-to-noise capabilities. Here, we exploit the large enhancements arising from (13)C photochemically induced dynamic nuclear...
nmrlearner
Journal club
0
05-10-2011 05:11 PM
1H-Detected 13C Photo-CIDNP as a Sensitivity Enhancement Tool in Solution NMR
1H-Detected 13C Photo-CIDNP as a Sensitivity Enhancement Tool in Solution NMR
Jung Ho Lee, Ashok Sekhar and Silvia Cavagnero
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja111613c/aop/images/medium/ja-2010-11613c_0005.gif
Journal of the American Chemical Society
DOI: 10.1021/ja111613c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/nDw3hSNxR80
nmrlearner
Journal club
0
05-06-2011 05:57 PM
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR.
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR.
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR.
J Magn Reson. 2010 Dec 31;
Authors: Comellas G, Lopez JJ, Nieuwkoop AJ, Lemkau LR, Rienstra CM
We describe a simple yet highly effective optimization strategy for SPINAL-64 (1)H decoupling conditions for magic-angle spinning solid-state NMR. With...
nmrlearner
Journal club
0
02-08-2011 06:28 PM
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment
Abstract Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives,...
nmrlearner
Proteins
0
01-22-2011 03:46 AM
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
J Biomol NMR. 2011 Jan 19;
Authors: Fan Y, Shi L, Ladizhansky V, Brown LS
Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties...
nmrlearner
Journal club
0
01-21-2011 01:22 AM
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR
Publication year: 2010
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 31 December 2010</br>
Gemma, Comellas , Jakob J., Lopez , Andrew J., Nieuwkoop , Luisel R., Lemkau , Chad M., Rienstra</br>
We describe a simple yet highly effective optimization strategy for SPINAL-64 1H decoupling conditions for magic-angle spinning solid-state NMR. With adjustment of the phase angles in a coupled manner,...
nmrlearner
Journal club
0
01-01-2011 08:57 AM
[NMR paper] Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse
Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse mixing.
Related Articles Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse mixing.
Chemphyschem. 2004 Jun 21;5(6):863-8
Authors: Tycko R
The sensitivity of two-dimensional (2D) 13C-13C solid-state NMR spectroscopy under magic-angle spinning (MAS) is shown to be enhanced by the use of transverse polarization transfer in place of the conventional longitudinal polarization transfer. Experimental results are reported for 2D...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins u
Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection.
Related Articles Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection.
J Am Chem Soc. 2003 Oct 1;125(39):11816-7
Authors: Duma L, Hediger S, Brutscher B, Böckmann A, Emsley L
We show that the resolution of homonuclear multidimensional solid-state NMR correlation experiments can be significantly improved using transition selection and spin-state-selective polarization transfer...