BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-25-2010, 08:21 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Sensitivity of NMR residual dipolar couplings to perturbations in folded and denature

Sensitivity of NMR residual dipolar couplings to perturbations in folded and denatured staphylococcal nuclease.

Related Articles Sensitivity of NMR residual dipolar couplings to perturbations in folded and denatured staphylococcal nuclease.

Biochemistry. 2005 May 3;44(17):6392-403

Authors: Sallum CO, Martel DM, Fournier RS, Matousek WM, Alexandrescu AT

The invariance of NMR residual dipolar couplings (RDCs) in denatured forms of staphylococcal nuclease to changes in denaturant concentration or amino acid sequence has previously been attributed to the robustness of long-range structure in the denatured state. Here we compare RDCs of the wild-type nuclease with those of a fragment that retains a folded OB-fold subdomain structure despite missing the last 47 of 149 residues. The RDCs of the intact protein and of the truncation fragment are substantially different under conditions that favor folded structure. By contrast, there is a strong correlation between the RDCs of the full-length protein and the fragment under denaturing conditions (6 M urea). The RDCs of the folded and unfolded forms of the proteins are uncorrelated. Our results suggest that RDCs are more sensitive to structural changes in folded than unfolded proteins. We propose that the greater susceptibility of RDCs in folded states is a consequence of the close packing of the polypeptide chain under native conditions. By contrast, the invariance of RDCs in denatured states is more consistent with a disruption of cooperative structure than with the retention of a unique long-range folding topology.

PMID: 15850373 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities
Measurement of 1Hâ??15N and 1Hâ??13C residual dipolar couplings in nucleic acids from TROSY intensities Abstract Analogous to the recently introduced ARTSY method for measurement of one-bond 1Hâ??15N residual dipolar couplings (RDCs) in large perdeuterated proteins, we introduce methods for measurement of base 13Câ??1H and 15Nâ??1H RDCs in protonated nucleic acids. Measurements are based on quantitative analysis of intensities in 1Hâ??15N and 13Câ??1H TROSY-HSQC spectra, and are illustrated for a 71-nucleotide adenine riboswitch. Results compare favorably with those of conventional...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Residual dipolar couplings: are multiple independent alignments always possible?
Residual dipolar couplings: are multiple independent alignments always possible? Abstract RDCs for the 14 kDa protein hen egg-white lysozyme (HEWL) have been measured in eight different alignment media. The elongated shape and strongly positively charged surface of HEWL appear to limit the protein to four main alignment orientations. Furthermore, low levels of alignment and the proteinâ??s interaction with some alignment media increases the experimental error. Together with heterogeneity across the alignment media arising from constraints on temperature, pH and ionic strength for some...
nmrlearner Journal club 0 12-26-2010 04:43 AM
[NMR paper] Refined NMR structure of alpha-sarcin by 15N-1H residual dipolar couplings.
Refined NMR structure of alpha-sarcin by 15N-1H residual dipolar couplings. Related Articles Refined NMR structure of alpha-sarcin by 15N-1H residual dipolar couplings. Eur Biophys J. 2005 Nov;34(8):1057-65 Authors: García-Mayoral MF, Pantoja-Uceda D, Santoro J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M (15)N-(1)H residual dipolar couplings (RDC) have been used as additional restraints to refine the solution structure of the ribotoxin alpha-sarcin. The RDC values were obtained by partial alignment of alpha-sarcin in the binary mixture...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Residual dipolar couplings in NMR structure analysis.
Residual dipolar couplings in NMR structure analysis. Related Articles Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct. 2004;33:387-413 Authors: Lipsitz RS, Tjandra N Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Residual dipolar couplings: synergy between NMR and structural genomics.
Residual dipolar couplings: synergy between NMR and structural genomics. Related Articles Residual dipolar couplings: synergy between NMR and structural genomics. J Biomol NMR. 2002 Jan;22(1):1-8 Authors: Al-Hashimi HM, Patel DJ Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However,...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Protein structural motif recognition via NMR residual dipolar couplings.
Protein structural motif recognition via NMR residual dipolar couplings. Related Articles Protein structural motif recognition via NMR residual dipolar couplings. J Am Chem Soc. 2001 Feb 14;123(6):1222-9 Authors: Andrec M, Du P, Levy RM NMR residual dipolar couplings have great potential to provide rapid structural information for proteins in the solution state. This information even at low resolution may be used to advantage in proteomics projects that seek to annotate large numbers of gene products for entire genomes. In this paper, we...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Facile measurement of 1Hâ??15N residual dipolar couplings in larger perdeuterated pro
Abstract We present a simple method, ARTSY, for extracting 1JNH couplings and 1Hâ??15N RDCs from an interleaved set of two-dimensional 1Hâ??15N TROSY-HSQC spectra, based on the principle of quantitative J correlation. The primary advantage of the ARTSY method over other methods is the ability to measure couplings without scaling peak positions or altering the narrow line widths characteristic of TROSY spectra. Accuracy of the method is demonstrated for the model system GB3. Application to the catalytic core domain of HIV integrase, a 36 kDa homodimer with unfavorable spectral...
nmrlearner Journal club 0 08-14-2010 04:19 AM
Theoretical framework for NMR residual dipolar couplings in unfolded proteins
Theoretical framework for NMR residual dipolar couplings in unfolded proteins O. I. Obolensky, Kai Schlepckow, Harald Schwalbe and A. V. Solov’yov Journal of Biomolecular NMR; 2007; 39(1) pp 1-16 Abstract: A theoretical framework for the prediction of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins under weakly aligning conditions is presented. The unfolded polypeptide chain is modeled as a random flight chain while the alignment medium is represented by a set of regularly arranged obstacles. For the case of bicelles oriented perpendicular to...
stewart Journal club 0 08-05-2008 02:26 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:57 PM.


Map