[NMR paper] Sensitivity Enhancement and Contrasting Information Provided by Free Radicals in Oriented-Sample NMR of Bicelle-Reconstituted Membrane Proteins
Publication date: Available online 28 November 2013 Source:Journal of Magnetic Resonance
Author(s): Deanna M. Tesch , Alexander A. Nevzorov
Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents.Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions.However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL-stearic-acid, TEMPOL, and CAT-1 were added to uniformly 15N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and the their effect on the longitudinal relaxation times (T 1Z) was investigated. The dramatically shortened T 1Z’s allowed for the signal gain per unit time to be used for either: i) up to a three-fold reduction of the total experimental time at 99% magnetization recovery or ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at “optimal” relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins. Graphical abstract
[NMR paper] Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Related Articles Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Prog Nucl Magn Reson Spectrosc. 2013 Nov;75:50-68
Authors: Gopinath T, Mote KR, Veglia G
Abstract
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS)...
nmrlearner
Journal club
0
10-29-2013 08:21 PM
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Publication date: Available online 12 August 2013
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
Author(s): T. Gopinath , Kaustubh R. Mote , Gianluigi Veglia</br>
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein...
Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles
Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 2 July 2011</br>
Wenxing, Tang , Alexander A., Nevzorov</br>
Thermodynamic limit of magnetization corresponding to the intact proton bath often cannot be transferred in a single cross-polarization contact. This is mainly due to the finite ratio between the number densities of the high-...
nmrlearner
Journal club
0
07-05-2011 05:52 AM
[NMR paper] Simulation of NMR data from oriented membrane proteins: practical information for exp
Simulation of NMR data from oriented membrane proteins: practical information for experimental design.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Simulation of NMR data from oriented membrane proteins: practical information for experimental design.
Biophys J. 1993 Oct;65(4):1460-9
Authors: Sanders CR, Schwonek JP
Several hundred solid state NMR...