[NMR paper] Sensitivity-enhanced Four-dimensional Amide-amide Correlation NMR Experiments for Sequential Assignment of Proline-rich Disordered Proteins.
Sensitivity-enhanced Four-dimensional Amide-amide Correlation NMR Experiments for Sequential Assignment of Proline-rich Disordered Proteins.
Sensitivity-enhanced Four-dimensional Amide-amide Correlation NMR Experiments for Sequential Assignment of Proline-rich Disordered Proteins.
J Am Chem Soc. 2018 Feb 28;:
Authors: Wong LE, Maier J, Wienands J, Becker S, Griesinger C
Abstract
Proline is prevalent in intrinsically disordered proteins (IDPs). NMR assignment of proline-rich IDPs is a challenge due to low dispersion of chemical...
nmrlearner
Journal club
0
03-01-2018 09:20 PM
Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
Abstract
New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use...
Sequential backbone assignment based on dipolar amide-to-amide correlation experiments
Sequential backbone assignment based on dipolar amide-to-amide correlation experiments
Abstract
Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an...
nmrlearner
Journal club
0
05-15-2015 07:52 AM
[NMR paper] Reduced Dimensionality tailored HN(C)N Experiments for Facile Backbone Resonance Assignment of Proteins through Unambiguous Identification of Sequential HSQC Peaks
Reduced Dimensionality tailored HN(C)N Experiments for Facile Backbone Resonance Assignment of Proteins through Unambiguous Identification of Sequential HSQC Peaks
Publication date: Available online 8 October 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Dinesh Kumar</br>
Two novel reduced dimensionality (RD) tailored HN(C)N experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments -referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH- exploit the linear combination of...
nmrlearner
Journal club
0
10-09-2013 05:31 AM
4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins
4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins
Abstract A pair of 4D NMR experiments for the backbone assignment of disordered proteins is presented. The experiments exploit 13C direct detection and non-uniform sampling of the indirectly detected dimensions, and provide correlations of the aliphatic proton (Hα, and Hβ) and carbon (Cα, Cβ) resonance frequencies to the protein backbone. Thus, all the chemical shifts regularly used to map the transient...
nmrlearner
Journal club
0
05-17-2012 08:40 AM
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Abstract Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal...
nmrlearner
Journal club
0
10-10-2011 06:27 AM
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
W. Trent Franks, Kathryn D. Kloepper, Benjamin J. Wylie and Chad M. Rienstra
Journal of Biomolecular NMR; 2007; 39(2); pp 107 - 131
Abstract:
Chemical shift assignment is the first step in all established protocols for structure determination of uniformly labeled proteins by NMR. The explosive growth in recent years of magic-angle spinning (MAS) solid-state NMR (SSNMR) applications is largely attributable to improved methods for backbone and side-chain chemical shift correlation...