BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-27-2013, 03:28 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.

Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.

Related Articles Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.

Proc Natl Acad Sci U S A. 2013 Sep 24;

Authors: Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M

Abstract
Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins, which weaken the noncovalent network formed by cellulose, hemicellulose, and pectins, but the CW target of expansins has remained elusive because of the minute amount of the protein required for activity and the complex nature of the CW. Using solid-state NMR spectroscopy, combined with sensitivity-enhancing dynamic nuclear polarization (DNP) and differential isotopic labeling of expansin and polysaccharides, we have now determined the functional binding target of expansin in the Arabidopsis thaliana CW. By transferring the electron polarization of a biradical dopant to the nuclei, DNP allowed selective detection of (13)C spin diffusion from trace concentrations of (13)C, (15)N-labeled expansin in the CW to nearby polysaccharides. From the spin diffusion data of wild-type and mutant expansins, we conclude that to loosen the CW, expansin binds highly specific cellulose domains enriched in xyloglucan, whereas more abundant binding to pectins is unrelated to activity. Molecular dynamics simulations indicate short (13)C-(13)C distances of 4-6 Å between a hydrophobic surface of the cellulose microfibril and an aromatic motif on the expansin surface, consistent with the observed NMR signals. DNP-enhanced 2D (13)C correlation spectra further reveal that the expansin-bound cellulose has altered conformation and is enriched in xyloglucan, thus providing unique insight into the mechanism of CW loosening. DNP-enhanced NMR provides a powerful, generalizable approach for investigating protein binding to complex macromolecular targets.


PMID: 24065828 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Solid-State NMR Investigations of Peptide-Lipid Interactions of the Transmembrane Domain of A Plant-Derived Protein, Hcf106
Solid-State NMR Investigations of Peptide-Lipid Interactions of the Transmembrane Domain of A Plant-Derived Protein, Hcf106 Publication date: Available online 24 September 2013 Source:Chemistry and Physics of Lipids</br> Author(s): Lei Zhang , Lishan Liu , Sergey Maltsev , Gary A. Lorigan , Carole Dabney-Smith</br> The chloroplast twin arginine translocation system transports highly folded precursor proteins across the thylakoid using the protonmotive force as its only energy source. Hcf106 and another thylakoid protein, cpTatC compose the precursor receptor...
nmrlearner Journal club 0 09-25-2013 11:15 AM
Dynamic Nuclear Polarization Enhanced NMR in the Solid-State
From The DNP-NMR Blog: Dynamic Nuclear Polarization Enhanced NMR in the Solid-State Akbey, Ü., et al., Dynamic Nuclear Polarization Enhanced NMR in the Solid-State. 2013, Springer Berlin Heidelberg. p. 1-48. http://dx.doi.org/10.1007/128_2013_436
nmrlearner News from NMR blogs 0 08-26-2013 08:46 PM
[NMR paper] Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning.
Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Related Articles Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Acc Chem Res. 2013 Jul 26; Authors: Parthasarathy S, Nishiyama Y, Ishii Y Abstract Recent research in fast magic angle spinning (MAS) methods has drasticallyimproved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In...
nmrlearner Journal club 0 07-31-2013 12:00 PM
[NMR paper] Dynamic Nuclear Polarization Enhanced NMR in the Solid-State.
Dynamic Nuclear Polarization Enhanced NMR in the Solid-State. Dynamic Nuclear Polarization Enhanced NMR in the Solid-State. Top Curr Chem. 2013 Jul 7; Authors: Akbey U, Franks WT, Linden A, Rydmark MO, Lange S, Oschkinat H Abstract Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein...
nmrlearner Journal club 0 07-09-2013 02:47 PM
Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR
Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi101795q/aop/images/medium/bi-2010-01795q_0008.gif Biochemistry DOI: 10.1021/bi101795q http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/9XLFFfb1pRU More...
nmrlearner Journal club 0 01-21-2011 03:31 AM
[NMR paper] Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse
Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse mixing. Related Articles Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse mixing. Chemphyschem. 2004 Jun 21;5(6):863-8 Authors: Tycko R The sensitivity of two-dimensional (2D) 13C-13C solid-state NMR spectroscopy under magic-angle spinning (MAS) is shown to be enhanced by the use of transverse polarization transfer in place of the conventional longitudinal polarization transfer. Experimental results are reported for 2D...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection.
Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection. Related Articles Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection. J Magn Reson. 2001 May;150(1):43-8 Authors: Hong M, Yamaguchi S A method for enhancing the sensitivity of 15N spectra of nonspinning solids through 1H indirect detection is introduced. By sampling the 1H signals in the windows of a pulsed spin-lock sequence, high-sensitivity 1H spectra can be obtained in two-dimensional (2D) spectra whose indirect dimension yields the 15N chemical...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Direct observation of cell wall structure in living plant tissues by solid-state C NM
Direct observation of cell wall structure in living plant tissues by solid-state C NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Direct observation of cell wall structure in living plant tissues by solid-state C NMR spectroscopy. Plant Physiol. 1990 Jan;92(1):61-5 Authors: Jarvis MC, Apperley DC Solid-state (13)C nuclear magnetic resonance (NMR) spectra of the following intact plant tissues were recorded by the crosspolarization...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:09 PM.


Map