BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-09-2015, 03:05 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus

Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus

Publication date: Available online 8 October 2015
Source:Cell

Author(s): Kendra*K. Frederick, Vladimir*K. Michaelis, Björn Corzilius, Ta-Chung Ong, Angela*C. Jacavone, Robert*G. Griffin, Susan Lindquist

Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments. Here, we applied DNP NMR to investigate the structure of a protein containing both an environmentally sensitive folding pathway and an intrinsically disordered region, the yeast prion protein Sup35. We added an exogenously prepared isotopically labeled protein to deuterated lysates, rendering the biological environment “invisible” and enabling highly efficient polarization transfer for DNP. In this environment, structural changes occurred in a region known to influence biological activity but intrinsically disordered in purified samples. Thus, DNP makes structural studies of proteins at endogenous levels in biological contexts possible, and such contexts can influence protein structure.
Graphical abstract


Teaser

Sensitivity-enhanced NMR enabling structural analysis of protein at endogenous levels in a native biological context reveals that the cellular environment alters the structure of an intrinsically disordered protein domain.





More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
HyperBIRD: A Sensitivity-Enhanced Approach to Collecting Homonuclear-Decoupled Proton NMR Spectra
From The DNP-NMR Blog: HyperBIRD: A Sensitivity-Enhanced Approach to Collecting Homonuclear-Decoupled Proton NMR Spectra Donovan, K.J. and L. Frydman, HyperBIRD: A Sensitivity-Enhanced Approach to Collecting Homonuclear-Decoupled Proton NMR Spectra. Angew Chem Int Ed Engl, 2014: p. n/a-n/a. http://www.ncbi.nlm.nih.gov/pubmed/25256418
nmrlearner News from NMR blogs 0 01-09-2015 03:58 PM
Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments
From The DNP-NMR Blog: Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments Takahashi, H., et al., Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments. J Magn Reson, 2013. 239C(0): p. 91-99. http://www.ncbi.nlm.nih.gov/pubmed/24480716
nmrlearner News from NMR blogs 0 02-10-2014 08:46 PM
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls
From The DNP-NMR Blog: Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls Wang, T., et al., Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proc Natl Acad Sci U S A, 2013. 110(41): p. 16444-9. http://www.ncbi.nlm.nih.gov/pubmed/24065828
nmrlearner News from NMR blogs 0 11-26-2013 01:19 AM
[NMR paper] Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Related Articles Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proc Natl Acad Sci U S A. 2013 Sep 24; Authors: Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M Abstract Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins,...
nmrlearner Journal club 0 09-27-2013 03:28 AM
[NMR paper] Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning.
Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Related Articles Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Acc Chem Res. 2013 Jul 26; Authors: Parthasarathy S, Nishiyama Y, Ishii Y Abstract Recent research in fast magic angle spinning (MAS) methods has drasticallyimproved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In...
nmrlearner Journal club 0 07-31-2013 12:00 PM
[NMR paper] Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection.
Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection. Related Articles Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection. J Magn Reson. 2001 May;150(1):43-8 Authors: Hong M, Yamaguchi S A method for enhancing the sensitivity of 15N spectra of nonspinning solids through 1H indirect detection is introduced. By sampling the 1H signals in the windows of a pulsed spin-lock sequence, high-sensitivity 1H spectra can be obtained in two-dimensional (2D) spectra whose indirect dimension yields the 15N chemical...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxatio
Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins. Related Articles Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins. J Biomol NMR. 2000 May;17(1):55-61 Authors: Liu A, Hu W, Qamar S, Majumdar A In this paper, we demonstrate that the sensitivity of triple-resonance NMR experiments can be enhanced...
nmrlearner Journal club 0 11-18-2010 09:15 PM
Structure of key protein for cellular signal transduction elucidated - News-Medical.n
Structure of key protein for cellular signal transduction elucidated - News-Medical.net <img alt="" height="1" width="1" /> Structure of key protein for cellular signal transduction elucidated News-Medical.net Using NMR spectroscopy, Professor Michael Sattler and his team elucidated the spatial structure of the Qua1 region of Sam68, which is responsible for the ... and more &raquo; Read here
nmrlearner Online News 0 09-10-2010 12:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:18 PM.


Map