Sensitivity-enhanced Four-dimensional Amide-amide Correlation NMR Experiments for Sequential Assignment of Proline-rich Disordered Proteins.
J Am Chem Soc. 2018 Feb 28;:
Authors: Wong LE, Maier J, Wienands J, Becker S, Griesinger C
Abstract
Proline is prevalent in intrinsically disordered proteins (IDPs). NMR assignment of proline-rich IDPs is a challenge due to low dispersion of chemical shifts. We propose here new sensitivity-enhanced 4D NMR experiments that correlate two pairs of amide resonances that are either consecutive (NHi-1, NHi) or flanking a proline at position i-1 (NHi-2, NHi). The maximum two-fold enhancement of sensitivity is achieved by employing two coherence order-selective (COS) transfers incorporated unconventionally into the pulse sequence. Each COS transfer confers an enhancement over amplitude-modulated transfer by a factor of ?2 specifically when transverse relaxation is slow. The experiments connect amide resonances over a long fragment of sequence interspersed with proline. When this method was applied to the proline-rich region of B cell adaptor protein SLP-65 (pH 6.0) and ?-synuclein (pH 7.4), which contain a total of 52 and 5 prolines, respectively, 99 % and 92 % of their non-prolyl amide resonances have been successfully assigned, demonstrating its robustness to address the assignment problem in large proline-rich IDPs.
PMID: 29489342 [PubMed - as supplied by publisher]
13 C APSY-NMR for sequential assignment of intrinsically disordered proteins
13 C APSY-NMR for sequential assignment of intrinsically disordered proteins
Abstract
The increasingly recognized biological relevance of intrinsically disordered proteins requires a continuous expansion of the tools for their characterization via NMR spectroscopy, the only technique so far able to provide atomic-resolution information on these highly mobile macromolecules. Here we present the implementation of projection spectroscopy in 13C-direct detected NMR experiments to achieve the sequence specific assignment of IDPs. The approach was used to...
nmrlearner
Journal club
0
02-28-2018 03:32 PM
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins
Abstract
Chemical Exchange Saturation Transfer (CEST) experiments are increasingly used to study slow timescale exchange processes in biomolecules. Although 15N- and 13C-CEST have been the approaches of choice, the development of spin state selective 1H-CEST pulse sequences that separate the effects of chemical and dipolar exchange significantly increases the utility of 1H-based experiments. Pulse schemes have been...
nmrlearner
Journal club
0
03-30-2017 06:42 PM
Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis
Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis
Abstract
Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial...
nmrlearner
Journal club
0
02-15-2017 03:10 AM
Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein
Abstract
New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use...
Sequential backbone assignment based on dipolar amide-to-amide correlation experiments
Sequential backbone assignment based on dipolar amide-to-amide correlation experiments
Abstract
Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an...
nmrlearner
Journal club
0
05-15-2015 07:52 AM
4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins
4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins
Abstract A pair of 4D NMR experiments for the backbone assignment of disordered proteins is presented. The experiments exploit 13C direct detection and non-uniform sampling of the indirectly detected dimensions, and provide correlations of the aliphatic proton (Hα, and Hβ) and carbon (Cα, Cβ) resonance frequencies to the protein backbone. Thus, all the chemical shifts regularly used to map the transient...
nmrlearner
Journal club
0
05-17-2012 08:40 AM
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
W. Trent Franks, Kathryn D. Kloepper, Benjamin J. Wylie and Chad M. Rienstra
Journal of Biomolecular NMR; 2007; 39(2); pp 107 - 131
Abstract:
Chemical shift assignment is the first step in all established protocols for structure determination of uniformly labeled proteins by NMR. The explosive growth in recent years of magic-angle spinning (MAS) solid-state NMR (SSNMR) applications is largely attributable to improved methods for backbone and side-chain chemical shift correlation...