Authors: Sumowski CV, Hanni M, Schweizer S, Ochsenfeld C
Abstract
The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.
Fractional enrichment of proteins using [2- 13 C]-glycerol as the carbon source facilitates measurement of excited state 13 Cα chemical shifts with improved sensitivity
Fractional enrichment of proteins using -glycerol as the carbon source facilitates measurement of excited state 13 Cα chemical shifts with improved sensitivity
Abstract
A selective isotope labeling scheme based on the utilization of -glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state 13Cα chemical shifts using Carrâ??Purcellâ??Meiboomâ??Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold...
nmrlearner
Journal club
0
05-20-2015 10:27 AM
[NMR paper] 77Se Chemical Shift Tensor of L-selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects.
77Se Chemical Shift Tensor of L-selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects.
Related Articles 77Se Chemical Shift Tensor of L-selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects.
J Phys Chem B. 2015 Feb 5;
Authors: Struppe JO, Zhang Y, Rozovsky S
Abstract
The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of...
nmrlearner
Journal club
0
02-06-2015 03:07 PM
[NMR paper] Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.
Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.
Related Articles Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.
Nucleic Acids Res. 2014 Nov 17;
Authors: Victora A, Möller HM, Exner TE
Abstract
NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis,...
nmrlearner
Journal club
0
11-19-2014 04:32 PM
[NMR paper] Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.
Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.
J Phys Chem A. 2014 Apr 10;118(14):2618-28
Authors: Altheimer BD, Mehta MA
Abstract
Porous crystalline dipeptides have gained recent attention for their potential as gas-storage materials. Within this large class is a group of...
nmrlearner
Journal club
0
10-05-2014 09:06 PM
Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design.
Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design.
Related Articles Fluorine-Protein Interactions and (19)F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design.
ChemMedChem. 2010 Nov 29;
Authors: Dalvit C, Vulpetti A
An empirical correlation between the fluorine isotropic chemical shifts, measured by (19)F NMR spectroscopy, and the type of fluorine-protein interactions observed in crystal structures is presented. The CF, CF(2), and...
nmrlearner
Journal club
0
12-01-2010 04:41 PM
[NMR paper] Secondary structural effects on protein NMR chemical shifts.
Secondary structural effects on protein NMR chemical shifts.
Related Articles Secondary structural effects on protein NMR chemical shifts.
J Biomol NMR. 2004 Nov;30(3):233-44
Authors: Wang Y
For an amino acid in protein, its chemical shift, delta(phi, psi)(s), is expressed as a function of its backbone torsion angles (phi and psi) and secondary state (s): delta(phi, psi)(s=deltaphi, psi)_coil+Deltadelta(phi, psi)_s), where delta(phi, psi)(coil) represents its chemical shift at coil state (s=coil); Delta delta(phi, psi)(s) (s=sheet or helix) is...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initi
Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach.
Related Articles Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach.
Science. 1993 Jun 4;260(5113):1491-6
Authors: de Dios AC, Pearson JG, Oldfield E
Recent theoretical developments permit the prediction of 1H, 13C, 15N, and 19F nuclear magnetic resonance chemical shifts in proteins and offer new ways of analyzing secondary and tertiary structure as well as for probing protein electrostatics. For 13C,...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
Sequential nearest-neighbor effects on computed 13Cα chemical shifts
Abstract To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of 13Cα chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue α/β protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed 13Cα chemical...