BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-06-2017, 07:43 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,786
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Self-Assembly of Human Profilin-1 Detected by CPMG NMR Spectroscopy.

Self-Assembly of Human Profilin-1 Detected by CPMG NMR Spectroscopy.

Related Articles Self-Assembly of Human Profilin-1 Detected by CPMG NMR Spectroscopy.

Biochemistry. 2017 Jan 04;:

Authors: Rennella E, Sekhar A, Kay LE

Abstract
Protein oligomerization in the cell has important implications in both health and disease and an understanding of the mechanisms by which proteins can self-associate is, therefore, of critical interest. Initial stages of the oligomerization process can be hard to detect, as they often involve the formation of sparsely populated and transient states that are difficult to characterize by standard biophysical approaches. Using relaxation dispersion NMR spectroscopy we study the oligomerization of human profilin-1, a protein that regulates the polymerization of actin. We show that in solution and at millimolar concentrations profilin-1 is predominantly monomeric. However, fits of concentration dependent relaxation data are consistent with the formation of a higher order oligomer that is generated via a multi-step process. Together with crystallographic data on profilin-2, a homologue of the protein studied here, our results suggest that profilin-1 forms a sparsely populated tetrameric conformer in solution.


PMID: 28052669 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The bibliography manager for researchers
nmrlearner Journal club 0 09-29-2015 02:39 PM
[NMR paper] Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy.
Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy. Related Articles Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy. J Magn Reson. 2013 Oct 26;237C:164-168 Authors: Park SH, Yang C, Opella SJ, Mueller LJ Abstract Two-dimensional (15)N chemical shift/(1)H...
nmrlearner Journal club 0 11-16-2013 03:09 AM
[NMR paper] Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy
Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy Publication date: Available online 26 October 2013 Source:Journal of Magnetic Resonance</br> Author(s): Sang Ho Park , Chen Yang , Stanley J. Opella , Leonard J. Mueller</br> Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous...
nmrlearner Journal club 0 10-27-2013 12:53 AM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The reference manager for researchers
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The reference manager for researchers
nmrlearner Journal club 0 04-11-2013 09:27 PM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The library management tool for researchers
nmrlearner Journal club 0 04-11-2013 03:08 PM
[NMR paper] Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N
Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR. FEBS Lett. 1993 Dec 28;336(3):457-61 Authors: Constantine KL, Friedrichs MS, Bell AJ, Lavoie TB, Mueller L, Metzler WJ The dynamic properties of 111 backbone HN sites in uncomplexed human profilin, a protein of 139 residues, have been...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] Characterization of the three-dimensional solution structure of human profilin: 1H, 1
Characterization of the three-dimensional solution structure of human profilin: 1H, 13C, and 15N NMR assignments and global folding pattern. Related Articles Characterization of the three-dimensional solution structure of human profilin: 1H, 13C, and 15N NMR assignments and global folding pattern. Biochemistry. 1993 Dec 21;32(50):13818-29 Authors: Metzler WJ, Constantine KL, Friedrichs MS, Bell AJ, Ernst EG, Lavoie TB, Mueller L Human profilin is a 15-kDa protein that plays a major role in the signaling pathway leading to cytoskeletal...
nmrlearner Journal club 0 08-22-2010 03:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:18 AM.


Map