Abstract
The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new "redox" approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-(13)C] acetate does not label ? carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-(13)C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.
PMID: 23990199 [PubMed - as supplied by publisher]
Magic Angle Spinning NMR Structure Determination ofProteins from Pseudocontact Shifts
Magic Angle Spinning NMR Structure Determination ofProteins from Pseudocontact Shifts
Jianping Li, Kala Bharath Pilla, Qingfeng Li, Zhengfeng Zhang, Xuncheng Su, Thomas Huber and Jun Yang
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja4021149/aop/images/medium/ja-2013-021149_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja4021149
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/c9Z9YUt3Pp8
nmrlearner
Journal club
0
05-24-2013 10:44 PM
[NMR paper] Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts.
Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts.
Related Articles Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts.
J Am Chem Soc. 2013 May 6;
Authors: Li J, Pilla KB, Li Q, Zhang Z, Su X, Huber T, Yang J
Abstract
Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number...
[NMR paper] Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Related Articles Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils.
Annu Rev Biophys. 2013 Mar 22;
Authors: Comellas G, Rienstra CM
Abstract
Protein structure determination methods using magic-angle spinning solidstate nuclear magnetic resonance (MAS SSNMR) have experienced a remarkable...
nmrlearner
Journal club
0
03-27-2013 03:33 PM
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination
Abstract Several techniques for spectral editing of 2D 13Cā??13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide Nā??CO peaks through 13Cā??15N dipolar dephasing. The sidechain methine (CH) signals of valine,...
nmrlearner
Journal club
0
10-13-2012 04:42 AM
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR
Marvin J. Bayro, Galia T. Debelouchina, Matthew T. Eddy, Neil R. Birkett, Catherine E. MacPhee, Melanie Rosay, Werner E. Maas, Christopher M. Dobson and Robert G. Griffin
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203756x/aop/images/medium/ja-2011-03756x_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203756x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
08-13-2011 02:47 AM
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR.
J Am Chem Soc. 2011 Jul 21;
Authors: Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, Macphee CE, Rosay MM, Maas WE, Dobson CM, Griffin RG
We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two...
nmrlearner
Journal club
0
07-23-2011 08:54 AM
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
J Am Chem Soc. 2005 Sep 21;127(37):12965-74
Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...