We have exploited the capability of in-cell NMR to selectively observe flexible regions within folded proteins to carry out a comparative study of two members of the highly conserved frataxin family which are found both in prokaryotes and in eukaryotes. They all contain a globular domain which shares more than 50% identity, which in eukaryotes is preceded by an N-terminal tail containing the mitochondrial import signal. We demonstrate that the NMR spectrum of the bacterial ortholog CyaY cannot be observed in the homologous E. coli system, although it becomes fully observable as soon as the cells are lysed. This behavior has been observed for several other compact globular proteins as seems to be the rule rather than the exception. The NMR spectrum of the yeast ortholog Yfh1 contains instead visible signals from the protein. We demonstrate that they correspond to the flexible N-terminal tail indicating that this is flexible and unfolded. This flexibility of the N-terminus agrees with previous studies of human frataxin, despite the extensive sequence diversity of this region in the two proteins. Interestingly, the residues that we observe in in-cell experiments are not visible in the crystal structure of a Yfh1 mutant designed to destabilize the first helix. More importantly, our results show that, in cell, the protein is predominantly present not as an aggregate but as a monomeric species.
[NMR paper] Selective observation of the disordered import signal of a globular protein by in-cell NMR: The example of frataxins.
Selective observation of the disordered import signal of a globular protein by in-cell NMR: The example of frataxins.
Selective observation of the disordered import signal of a globular protein by in-cell NMR: The example of frataxins.
Protein Sci. 2015 Mar 12;
Authors: Popovic M, Sanfelice D, Pastore C, Prischi F, Temussi PA, Pastore A
Abstract
We have exploited the capability of in-cell NMR to selectively observe flexible regions within folded proteins to carry out a comparative study of two members of the highly...
nmrlearner
Journal club
0
03-17-2015 05:12 PM
Selective observation of the disordered import signal of a globular protein by in-cell NMR: The example of frataxins
Selective observation of the disordered import signal of a globular protein by in-cell NMR: The example of frataxins
Abstract
We have exploited the capability of in-cell NMR to selectively observe flexible regions within folded proteins to carry out a comparative study of two members of the highly conserved frataxin family which are found both in prokaryotes and in eukaryotes. They all contain a globular domain which shares more than 50% identity, which in eukaryotes is preceded by an N-terminal tail containing the mitochondrial import signal. We demonstrate that the NMR spectrum of the...
nmrlearner
Journal club
0
03-12-2015 11:38 PM
[NMR paper] Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
J Am Chem Soc. 2013 Apr 3;135(13):5105-10
Authors: Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S
Abstract
...
nmrlearner
Journal club
0
10-14-2014 09:48 PM
Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization
From the The DNP-NMR Blog:
Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization
Takahashi, H., et al., Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization. J. Am. Chem. Soc., 2013.
http://dx.doi.org/10.1021/ja312501d
Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate...
nmrlearner
News from NMR blogs
0
04-15-2013 08:52 AM
iHADAMAC: a complementary tool for sequential resonance assignment of globular and highly disordered proteins
iHADAMAC: a complementary tool for sequential resonance assignment of globular and highly disordered proteins
Publication year: 2011
Source: Journal of Magnetic Resonance, Available online 9 November 2011</br>
Sophie*Feuerstein, Michael J.*Plevin, Dieter*Willbold, Bernhard*Brutscher</br>
An experiment, iHADAMAC, is presented that yields information on the amino-acid type of individual residues in a protein by editing theH-N correlations into 7 different 2D spectra, each corresponding to a different class of amino-acid types. Amino-acid type discrimination is realized via a Hadamard...
nmrlearner
Journal club
0
11-10-2011 07:38 AM
[NMR paper] Selective observation of the Cu(I)-amicyanin metal site by paramagnetic NMR on partia
Selective observation of the Cu(I)-amicyanin metal site by paramagnetic NMR on partially oxidised samples.
Selective observation of the Cu(I)-amicyanin metal site by paramagnetic NMR on partially oxidised samples.
J Biomol NMR. 1997 Apr;9(3):299-305
Authors: Salgado J, Kalverda AP, Canters GW
The relaxation enhancement caused by paramagnetic copper(II) is used to observe selectivelythe metal site of copper(I)-amicyanin by one- and two-dimensional NMR spectroscopy. Theparamagnetic effect is communicated to the diamagnetic protein through the...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Selective observation of the Cu(I)-amicyanin metal site by paramagnetic NMR on partia
Selective observation of the Cu(I)-amicyanin metal site by paramagnetic NMR on partially oxidised samples.
Selective observation of the Cu(I)-amicyanin metal site by paramagnetic NMR on partially oxidised samples.
J Biomol NMR. 1997 Apr;9(3):299-305
Authors: Salgado J, Kalverda AP, Canters GW
The relaxation enhancement caused by paramagnetic copper(II) is used to observe selectivelythe metal site of copper(I)-amicyanin by one- and two-dimensional NMR spectroscopy. Theparamagnetic effect is communicated to the diamagnetic protein through the...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] Import, processing, and two-dimensional NMR structure of a linker-deleted signal pept
Import, processing, and two-dimensional NMR structure of a linker-deleted signal peptide of rat liver mitochondrial aldehyde dehydrogenase.
Related Articles Import, processing, and two-dimensional NMR structure of a linker-deleted signal peptide of rat liver mitochondrial aldehyde dehydrogenase.
J Biol Chem. 1993 Sep 15;268(26):19906-14
Authors: Thornton K, Wang Y, Weiner H, Gorenstein DG
Previous NMR studies (Karslake, C., Piotto, M. E., Pak, Y. M., Weiner, H., and Gorenstein, D. G. (1990) Biochemistry 29, 9872-9878) had shown that a 22-amino...