BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rating: Thread Rating: 1 votes, 1.00 average. Display Modes
  #1  
Old 07-07-2014, 11:50 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,795
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Selective 15N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy

Selective 15N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy

Abstract

The side-chain amide groups of asparagine and glutamine play important roles in stabilizing the structural fold of proteins, participating in hydrogen-bonding networks and protein interactions. Selective 15N-labeling of side-chain amides, however, can be a challenge due to enzyme-catalyzed exchange of amide groups during protein synthesis. In the present study, we developed an efficient way of selectively labeling the side chains of asparagine, or asparagine and glutamine residues with 15NH2. Using the biosynthesis pathway of tryptophan, a protocol was also established for simultaneous selective 15N-labeling of the side-chain NH groups of asparagine, glutamine, and tryptophan. In combination with site-specific tagging of the target protein with a lanthanide ion, we show that selective detection of 15N-labeled side-chains of asparagine and glutamine allows determination of magnetic susceptibility anisotropy tensors based exclusively on pseudocontact shifts of amide side-chain protons.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups Abstract A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly 13C labeled proteins. The methodology has been tested using the 87-residue colicin E7 immunity protein, Im7, which is known to fold via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale....
nmrlearner Journal club 0 06-20-2011 03:31 PM
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups.
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups. Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups. J Biomol NMR. 2011 Jun 18; Authors: Hansen AL, Kay LE A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly (13)C labeled proteins. The methodology has...
nmrlearner Journal club 0 06-18-2011 01:10 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy. Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy. J Am Chem Soc. 2010 Dec 27; Authors: Esadze A, Li DW, Wang T, Bru?schweiler R, Iwahara J Despite their importance in macromolecular interactions and functions, the dynamics of lysine side-chain amino groups in proteins are not well understood. In this study, we have developed the methodology for the investigations of the dynamics...
nmrlearner Journal club 0 12-29-2010 04:04 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy Alexandre Esadze, Da-Wei Li, Tianzhi Wang, Rafael Bru?schweiler and Junji Iwahara http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107847d/aop/images/medium/ja-2010-07847d_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja107847d http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/iFwgRBt-zto
nmrlearner Journal club 0 12-28-2010 05:27 AM
[NMR paper] A combinatorial selective labeling method for the assignment of backbone amide NMR re
A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. Related Articles A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc. 2004 Apr 28;126(16):5020-1 Authors: Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ A combinatorial selective labeling (CSL) method is presented for the assignment of backbone amide NMR resonances, which has a particular application in the identification of protein-ligand interaction sites. The method builds on the dual...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Use of selective Trp side chain labeling to characterize protein-protein and protein-
Use of selective Trp side chain labeling to characterize protein-protein and protein-ligand interactions by NMR spectroscopy. Related Articles Use of selective Trp side chain labeling to characterize protein-protein and protein-ligand interactions by NMR spectroscopy. J Am Chem Soc. 2003 Mar 12;125(10):2892-3 Authors: Rodriguez-Mias RA, Pellecchia M Recent studies on amino acid occurrence in protein binding sites suggest that only a reduced number of residues are responsible for most interaction energy in protein-protein and protein-ligand...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Hydrogen fluoride catalyzed migration of side chain protecting groups onto Fmoc durin
Hydrogen fluoride catalyzed migration of side chain protecting groups onto Fmoc during solid phase peptide synthesis. Characterization by CF-FAB analysis of carboxypeptidase digestions and NMR spectroscopy. Related Articles Hydrogen fluoride catalyzed migration of side chain protecting groups onto Fmoc during solid phase peptide synthesis. Characterization by CF-FAB analysis of carboxypeptidase digestions and NMR spectroscopy. Int J Pept Protein Res. 1992 Dec;40(6):538-45 Authors: Grode SH, Strother DS, Runge TA, Dobrowolski PJ The solid-phase...
nmrlearner Journal club 0 08-21-2010 11:45 PM
High Resolution 1H Detected 1H,13C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective 1H,2H Isotopic Labeling of Methyl Groups
High Resolution <SUP>1</SUP>H Detected <SUP>1</SUP>H,<SUP>13</SUP>C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective <SUP>1</SUP>H,<SUP>2</SUP>H Isotopic Labeling of Methyl Groups Vipin Agarwal, Anne Diehl, Nikolai Skrynnikov, and Bernd Reif J. Am. Chem. Soc.; 2006; 128(39) pp 12620 - 12621; Abstract: MAS solid-state NMR experiments applied to biological solids are still hampered by low sensitivity and resolution. In this work, we employ a deuteration scheme in which individual methyl groups are selectively protonated. This labeling scheme...
administrator Solid-state high-res. NMR 1 08-05-2009 03:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:40 AM.


Map