BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-12-2017, 05:13 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.

Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.

Related Articles Selective (1)H-(1)H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR.

J Phys Chem Lett. 2017 May 11;:

Authors: Jain MG, Lalli D, Stanek J, GOwda CM, Prakash S, Schwarzer TS, Schubeis T, Castiglione K, Andreas LB, Madhu PK, Pintacuda G, Agarwal V

Abstract
Very fast magic-angle spinning (MAS>80 kHz) NMR spectroscopy combined with high field magnets has enabled the acquisition of proton-detected spectra in fully protonated solid samples with sufficient resolution and sensitivity. One of the primary challenges in structure determination of protein is to observe long-range 1H-1H proximities. We demonstrate a new experiment that allows observing selective HN-HN/H?-H?/Hmethyl-Hmethyl contacts on the order of 5-6 Å despite the presence of other protons at shorter distances. Such contacts are critical to access tertiary structures of proteins but difficult to observe in a dense proton matrix. They have only been reported in perdeuterated proteins. Numerical simulations and experiments show our experiment to outperform the currently used recoupling methods, RFDR, in terms of sensitivity and number of observed long-range contacts. Our method is demonstrated on GB1 and the ?-barrel membrane protein AlkL.


PMID: 28492324 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR.
Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--link.aip.org-jhtml-linkto.gif Related Articles Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR. J Chem Phys. 2017 Feb 28;146(8):084202 Authors: Equbal A, Madhu PK, Meier BH, Nielsen NC, Ernst M, Agarwal V Abstract Major advances have recently been made in the field of heteronuclear dipolar decoupling in...
nmrlearner Journal club 0 03-03-2017 10:56 PM
[NMR paper] Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.
Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone. Magn Reson Chem. 2016 Feb;54(2):132-5 Authors: Singh C, Rai RK, Kayastha AM, Sinha N Abstract Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line...
nmrlearner Journal club 0 01-28-2017 08:29 PM
[NMR paper] Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.
Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Related Articles Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci U S A. 2016 Aug 3; Authors: Andreas LB, Jaudzems K, Stanek J, Lalli D, Bertarello A, Le Marchand T, Cala-De Paepe D, Kotelovica S, Akopjana I, Knott B, Wegner S, Engelke F, Lesage A, Emsley L, Tars K, Herrmann T, Pintacuda G Abstract Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on...
nmrlearner Journal club 0 08-05-2016 12:26 PM
[NMR paper] Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies. Related Articles Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies. J Magn Reson. 2015 Nov 9;261:149-156 Authors: Mote KR, Madhu PK Abstract (1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy...
nmrlearner Journal club 0 11-19-2015 05:22 PM
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies Publication date: Available online 9 November 2015 Source:Journal of Magnetic Resonance</br> Author(s): Kaustubh R. Mote, Perunthiruthy K. Madhu</br> 1 H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong 1 H- 1 H dipolar coupled network that...
nmrlearner Journal club 0 11-10-2015 09:10 AM
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins Abstract Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of 1H, 13C, and 15N resonances and structural analysis in fully protonated proteins. We demonstrate that 13C detected 3D experiments are highly efficient and permit assignments of the majority of backbone resonances, as shown in an 89-residue dynein light chain 8, LC8 protein. With these experiments, we...
nmrlearner Journal club 0 11-11-2014 11:57 AM
[NMR paper] Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins.
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. Related Articles Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. J Biomol NMR. 2014 Nov 9; Authors: Guo C, Hou G, Lu X, O'Hare B, Struppe J, Polenova T Abstract Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of (1)H, (13)C, and (15)N...
nmrlearner Journal club 0 11-10-2014 10:59 PM
[NMR paper] High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning.
High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. Related Articles High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. J Biomol NMR. 2013 Dec 13; Authors: Ward ME, Wang S, Krishnamurthy S, Hutchins H, Fey M, Brown LS, Ladizhansky V Abstract Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane...
nmrlearner Journal club 0 12-18-2013 04:00 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:46 PM.


Map