BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:45 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Secondary structure of Src homology 2 domain of c-Abl by heteronuclear NMR spectrosco

Secondary structure of Src homology 2 domain of c-Abl by heteronuclear NMR spectroscopy in solution.

Related Articles Secondary structure of Src homology 2 domain of c-Abl by heteronuclear NMR spectroscopy in solution.

Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11673-7

Authors: Overduin M, Mayer B, Rios CB, Baltimore D, Cowburn D

The Src homology 2 (SH2) domain is a recognition motif thought to mediate the association of the cytoplasmic proteins involved in signal transduction by binding to phosphotyrosyl-containing sequences in proteins. Assignments of nearly all 1H and 15N resonances of the SH2 domain from the c-Abl protein-tyrosine kinase have been obtained from homonuclear and heteronuclear NMR experiments. The secondary structure has been elucidated from the pattern of nuclear Overhauser effects, from vicinal coupling constants, and from observation of slowly exchanging amino hydrogens. The secondary structure contains two alpha-helices and eight beta-strands, six of which are arranged in two contiguous, antiparallel beta-sheets. Residues believed to be involved in phosphotyrosyl ligand binding are on a face of one beta-sheet. The alignment of homologous sequences on the basis of secondary structure suggests a conserved global fold in a family of SH2 domains.

PMID: 1281542 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy Abstract Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR...
nmrlearner Journal club 0 12-22-2011 06:50 AM
NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode.
NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode. NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode. J Biomol NMR. 2010 Sep;48(1):59-64 Authors: Umemoto R, Nishida N, Ogino S, Shimada I
nmrlearner Journal club 0 12-18-2010 12:00 PM
[NMR paper] NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide
NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Related Articles NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell. 1998 Oct 16;95(2):269-77 Authors: Liu X, Wang H, Eberstadt M, Schnuchel A, Olejniczak ET, Meadows RP, Schkeryantz JM, Janowick DA, Harlan JE, Harris EA, Staunton DE, Fesik SW Guanine nucleotide exchange factors for the Rho family of GTPases contain a Dbl homology (DH) domain responsible for catalysis and a...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Heteronuclear NMR assignments and secondary structure of the coiled coil trimerizatio
Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Precise limits of the N-terminal domain of DnaB helicase determined by NMR spectrosco
Precise limits of the N-terminal domain of DnaB helicase determined by NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Precise limits of the N-terminal domain of DnaB helicase determined by NMR spectroscopy. Biochem Biophys Res Commun. 1997 Feb 3;231(1):126-30 Authors: Miles CS, Weigelt J, Stamford NP, Dammerova N, Otting G, Dixon NE Two separate N-terminal fragments of the 470-amino-acid Escherichia coli DnaB helicase, comprising residues 1-142 and...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Precise limits of the N-terminal domain of DnaB helicase determined by NMR spectrosco
Precise limits of the N-terminal domain of DnaB helicase determined by NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Precise limits of the N-terminal domain of DnaB helicase determined by NMR spectroscopy. Biochem Biophys Res Commun. 1997 Feb 3;231(1):126-30 Authors: Miles CS, Weigelt J, Stamford NP, Dammerova N, Otting G, Dixon NE Two separate N-terminal fragments of the 470-amino-acid Escherichia coli DnaB helicase, comprising residues 1-142 and...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments.
Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments. Related Articles Secondary structure of human interleukin 2 from 3D heteronuclear NMR experiments. Biochemistry. 1992 Aug 25;31(33):7741-4 Authors: Mott HR, Driscoll PC, Boyd J, Cooke RM, Weir MP, Campbell ID Recombinant 15N-labeled human interleukin 2 (IL-2) has been studied by 2D and 3D NMR using uniformly 15N-labeled protein. Assignment of the backbone resonances has enabled the secondary structure of the protein to be defined. The secondary structure was...
nmrlearner Journal club 0 08-21-2010 11:45 PM
NMR structure of the calponin homology domain of human IQGAP1 and its implications fo
NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode Content Type Journal Article DOI 10.1007/s10858-010-9434-8 Authors Ryo Umemoto, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan Noritaka Nishida, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan Shinji Ogino, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:00 PM.


Map