July 2012
Publication year: 2012 Source:Biophysical Chemistry, Volumes 168–169
Rotational velocity rescaling (RVR) enables 15N relaxation data for the anisotropically tumbling B3 domain of Protein G (GB3) to be accurately predicted from 1?s of constant energy molecular dynamics simulation without recourse to any system-specific adjustable parameters. Superposition of adjacent trajectory frames yields the unique rotation axis and angle of rotation that characterizes each transformation. By proportionally scaling the rotation angles relating each consecutive pair of frames, the rotational diffusion in the RVR-MD trajectory was adjusted to correct for the elevated self-diffusion rate of TIP3P water. 15N T1 and T2 values for 32 residues in the regular secondary structures of GB3 were predicted with an rms deviation of 2.2%, modestly larger than the estimated experimental uncertainties. Residue-specific chemical shift anisotropy (CSA) values reported from isotropic solution, liquid crystal and microcrystalline solid measurements less accurately predict GB3 relaxation than does applying a constant CSA value, potentially indicating structure-dependent correlated variations in 1H 15N bond length and 15N CSA. By circumventing the quasi-static analysis of NMR order parameters often applied in MD studies, a more direct test is provided for assessing the accuracy with which molecular simulations predict protein motion in the ps–ns timeframe. Since no assumption of separability between global tumbling and internal motion is required, utility in analyzing simulations of mobility in disordered protein segments is anticipated. Graphical abstract
Highlights
?Rescaling of rotational velocity in molecular dynamics for the B3 domain of Protein G reproduces its anisotropic tumbling. ?The optimal rotational velocity rescaling factor closely matches that predicted from the self-diffusion rate of TIP3P water. ?15N relaxation data of GB3 can be predicted from the rescaled trajectories with no system-specific adjustable parameters. ?15N chemical shift anisotropy of -168ppm predicts the field-dependent data better than reported residue-specific values. ?Sites for which observed and predicted relaxation markedly differ are assessed in terms of implied force field inadequacies.
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction
Abstract While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the...
nmrlearner
Journal club
0
02-11-2012 10:31 AM
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data
Microsecond Time-Scale Conformational Exchange in Proteins: Using Long Molecular Dynamics Trajectory To Simulate NMR Relaxation Dispersion Data
Yi Xue, Joshua M. Ward, Tairan Yuwen, Ivan S. Podkorytov and Nikolai R. Skrynnikov
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja206442c/aop/images/medium/ja-2011-06442c_0001.gif
Journal of the American Chemical Society
DOI: 10.1021/ja206442c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/NvRRKHU2H3k
nmrlearner
Journal club
0
01-28-2012 05:27 AM
[NMR paper] Effective rotational correlation times of proteins from NMR relaxation interference.
Effective rotational correlation times of proteins from NMR relaxation interference.
Related Articles Effective rotational correlation times of proteins from NMR relaxation interference.
J Magn Reson. 2006 Jan;178(1):72-6
Authors: Lee D, Hilty C, Wider G, Wüthrich K
Knowledge of the effective rotational correlation times, tauc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of tauc enables...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Determination of protein rotational correlation time from NMR relaxation data at vari
Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities.
Related Articles Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities.
J Biomol NMR. 2004 Dec;30(4):431-42
Authors: Korchuganov DS, Gagnidze IE, Tkach EN, Schulga AA, Kirpichnikov MP, Arseniev AS
An accurate determination of the overall rotation of a protein plays a crucial role in the investigation of its internal motions by NMR. In the present work, an innovative approach to the...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] The use of NMR chemical shifts to analyse the MD trajectories: simulation of bovine p
The use of NMR chemical shifts to analyse the MD trajectories: simulation of bovine pancreatic trypsin inhibitor dynamics in water as a test case for solvent influences.
Related Articles The use of NMR chemical shifts to analyse the MD trajectories: simulation of bovine pancreatic trypsin inhibitor dynamics in water as a test case for solvent influences.
J Pept Sci. 2003 Jul;9(7):450-60
Authors: Busetta B, Picard P, Precigoux G
In this paper the NMR secondary chemical shifts, that are estimated from a set of 3D-structures, are compared with...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
Molecular basis of photochromism of a fluorescent protein revealed by direct 13C dete
Molecular basis of photochromism of a fluorescent protein revealed by direct 13C detection under laser illumination
Abstract Dronpa is a green fluorescent protein homologue with a photochromic property. A green laser illumination reversibly converts Dronpa from a green-emissive bright state to a non-emissive dark state, and ultraviolet illumination converts it to the bright state. We have employed solution NMR to understand the underlying molecular mechanism of the photochromism. The detail characterization of Dronpa is hindered as it is metastable in the dark state and spontaneously...
nmrlearner
Journal club
0
11-07-2010 02:47 PM
[NMR paper] Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurem
Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.
Eur J Biochem. 1995 Jun 15;230(3):1014-24
Authors: Tjandra N, Kuboniwa H, Ren H, Bax A
The backbone motions of calcium-free Xenopus calmodulin have been characterized by measurements of the 15N...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation:
A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation: backbone dynamics of the glucocorticoid receptor DNA-binding domain.
Related Articles A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation: backbone dynamics of the glucocorticoid receptor DNA-binding domain.
Proteins. 1993 Dec;17(4):375-90
Authors: Eriksson MA, Berglund H, Härd T, Nilsson L
The rapid motions of the backbone of the DNA-binding domain of the glucocorticoid receptor (GR DBD) have been investigated using...