Related ArticlesRotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage.
Biochemistry. 1992 Sep 1;31(34):7931-8
Authors: Thompson LK, McDermott AE, Raap J, van der Wielen CM, Lugtenburg J, Herzfeld J, Griffin RG
Rotational resonance, a new solid-state NMR technique for determining internuclear distances, is used to measure a distance in the active site of bacteriorhodopsin (bR) that changes in different states of the protein. The experiments are targeted to the active site of bR through 13C labeling of both the retinal chromophore and the Lys side chains of the protein. The time course of the rotor-driven magnetization exchange between a pair of 13C nuclei is then observed to determine the dipolar coupling and therefore the internuclear distance. Using this approach, we have measured the distance from [14-13C]retinal to [epsilon-13C]Lys216 in dark-adapted bR in order to examine the structure of the retinal-protein linkage and its role in coupling the isomerizations of retinal to unidirectional proton transfer. This distance depends on the configuration of the intervening C=N bond. The 3.0 +/- 0.2 A distance observed in bR555 demonstrates that the C=N bond is syn, and the 4.1 +/- 0.3 A distance observed in bR568 demonstrates that the C=N bond is anti. These direct distance determinations independently confirm the configurations previously deduced from solid-state NMR chemical shift and resonance Raman vibrational spectra. The spectral selectivity of rotational resonance allows these two distances to be measured independently in a sample containing both bR555 and bR568; the presence of both states and of 25% lipid in the sample demonstrates the use of rotational resonance to measure an active site distance in a membrane protein with an effective molecular mass of about 85 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Biochemistry. 2011 Aug 27;
Authors: Peng D, Satterlee JD, Ma LH, Dallas JL, Smith KM, Zhang X, Sato M, La Mar GN
Abstract
Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which...
nmrlearner
Journal club
0
08-30-2011 04:52 PM
[NMR paper] Solution 1H NMR study of the active site molecular structure and magnetic properties
Solution 1H NMR study of the active site molecular structure and magnetic properties of the cyanomet complex of the isolated, tetrameric beta-chain from human adult hemoglobin.
Related Articles Solution 1H NMR study of the active site molecular structure and magnetic properties of the cyanomet complex of the isolated, tetrameric beta-chain from human adult hemoglobin.
Biochim Biophys Acta. 2004 Sep 1;1701(1-2):75-87
Authors: Tran AT, Kolczak U, La Mar GN
The solution molecular structure and the electronic and magnetic properties of the heme...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Two-dimensional NMR study of the heme active site structure of chloroperoxidase.
Two-dimensional NMR study of the heme active site structure of chloroperoxidase.
Related Articles Two-dimensional NMR study of the heme active site structure of chloroperoxidase.
J Biol Chem. 2003 Mar 7;278(10):7765-74
Authors: Wang X, Tachikawa H, Yi X, Manoj KM, Hager LP
The heme active site structure of chloroperoxidase (CPO), a glycoprotein that displays versatile catalytic activities isolated from the marine mold Caldariomyces fumago, has been characterized by two-dimensional NMR spectroscopic studies. All hyperfine shifted resonances...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] H-NMR study of temperature-induced structure alteration at the active site of horse h
H-NMR study of temperature-induced structure alteration at the active site of horse heart cytochrome c.
Related Articles H-NMR study of temperature-induced structure alteration at the active site of horse heart cytochrome c.
J Biochem. 1996 Jan;119(1):16-22
Authors: Yamamoto Y
The molecular structure of the active site of horse heart met-cyano cytochrome c, as a function of temperature, has been investigated using 1H-NMR. A temperature dependence study of the NMR spectra revealed that one heme methyl proton resonance exhibits anti-Curie...
nmrlearner
Journal club
0
08-22-2010 02:27 PM
[NMR paper] 1H-NMR comparative study of the active site in shark (Galeorhinus japonicus), horse,
1H-NMR comparative study of the active site in shark (Galeorhinus japonicus), horse, and sperm whale deoxy myoglobins.
Related Articles 1H-NMR comparative study of the active site in shark (Galeorhinus japonicus), horse, and sperm whale deoxy myoglobins.
J Biochem. 1992 Sep;112(3):414-20
Authors: Yamamoto Y, Iwafune K, Chûjô R, Inoue Y, Imai K, Suzuki T
1H-NMR spectra of deoxy myoglobins (Mbs) from shark (Galeorhinus japonicus), horse, and sperm whale have been studied to gain insights into their active site structure. It has been...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] A 1H-NMR study of electronic structure of the active site of Galeorhinus japonicus me
A 1H-NMR study of electronic structure of the active site of Galeorhinus japonicus metmyoglobin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles A 1H-NMR study of electronic structure of the active site of Galeorhinus japonicus metmyoglobin.
Eur J Biochem. 1990 Aug 28;192(1):225-9
Authors: Yamamoto Y, Osawa A, Inoue Y, Chûjô R, Suzuki T
The ferric high-spin form of the myoglobin from the shark Galeorhinus japonicus, which...
nmrlearner
Journal club
0
08-21-2010 11:04 PM
[NMR paper] 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorh
1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus.
Eur J Biochem. 1990 May 20;189(3):567-73
Authors: Yamamoto Y, Inoue Y, Chûjô R, Suzuki T
Time-dependent NOE studies of the C13(1) and C17(1) methylene proton resonances of the heme...