BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-10-2015, 07:22 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The role of water in protein's behavior: The two dynamical crossovers studied by NMR and FTIR techniques.

The role of water in protein's behavior: The two dynamical crossovers studied by NMR and FTIR techniques.

Related Articles The role of water in protein's behavior: The two dynamical crossovers studied by NMR and FTIR techniques.

Comput Struct Biotechnol J. 2015;13:33-7

Authors: Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Dugo G


Abstract
The role the solvent plays in determining the biological activity of proteins is of primary importance. Water is the solvent of life and proteins need at least a water monolayer covering their surface in order to become biologically active. We study how the properties of water and the effect of its coupling with the hydrophilic moieties of proteins govern the regime of protein activity. In particular we follow, by means of Fourier Transform Infrared spectroscopy, the thermal evolution of the amide vibrational modes of hydrated lysozyme in the temperature interval 180*K*
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
The role of water in proteins behavior: The two dynamical crossovers studied by NMR and FTIR techniques
The role of water in proteins behavior: The two dynamical crossovers studied by NMR and FTIR techniques Publication date: Available online 15 November 2014 Source:Computational and Structural Biotechnology Journal</br> Author(s): Francesco Mallamace , Carmelo Corsaro , Domenico Mallamace , Sebastiano Vasi , Cirino Vasi , Giacomo Dugo</br> The role the solvent plays in determining the biological activity of proteins is of primary importance. Water is the solvent of life and proteins need at least a water monolayer covering their surface in order to become...
nmrlearner Journal club 0 11-15-2014 01:47 PM
[NMR paper] Role of 2-Hydroxyethyl Methacrylate in the Interaction of Dental Monomers with Collagen Studied by Saturation Transfer Difference NMR.
Role of 2-Hydroxyethyl Methacrylate in the Interaction of Dental Monomers with Collagen Studied by Saturation Transfer Difference NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Role of 2-Hydroxyethyl Methacrylate in the Interaction of Dental Monomers with Collagen Studied by Saturation Transfer Difference NMR. J Dent. 2014 Jan 16; Authors: Hiraishi N, Tochio N, Kigawa T, Otsuki M, Tagam J Abstract Objections: Functional adhesive monomers...
nmrlearner Journal club 0 01-21-2014 11:10 PM
[NMR paper] Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR a
Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Related Articles Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Magn Reson Chem. 2004 Feb;42(2):258-66 Authors: Asakura T, Suita K, Kameda T, Afonin S, Ulrich AS The influence of the bulky and H-bonding Tyr side-chain on its Ala- and Gly-rich environment in Bombyx mori silk fibroin was...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Membrane insertion of a lipidated ras peptide studied by FTIR, solid-state NMR, and n
Membrane insertion of a lipidated ras peptide studied by FTIR, solid-state NMR, and neutron diffraction spectroscopy. Related Articles Membrane insertion of a lipidated ras peptide studied by FTIR, solid-state NMR, and neutron diffraction spectroscopy. J Am Chem Soc. 2003 Apr 9;125(14):4070-9 Authors: Huster D, Vogel A, Katzka C, Scheidt HA, Binder H, Dante S, Gutberlet T, Zschörnig O, Waldmann H, Arnold K Membrane binding of a doubly lipid modified heptapeptide from the C-terminus of the human N-ras protein was studied by Fourier transform...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Relaxation of water protons in highly concentrated aqueous protein systems studied by
Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy. Related Articles Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy. Z Naturforsch C. 2001 Nov-Dec;56(11-12):1075-81 Authors: Szuminska K, Gutsze A, Kowalczyk A Concentrated Aqueous Protein Systems, Proton Relaxation Times, Slow Chemical Exchange In this paper we present proton spin-lattice (T1) and spin-spin (T2) relaxation times measured vs. concentration, temperature, pulse...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] NMR study suggests a major role for Arg111 in maintaining the structure and dynamical
NMR study suggests a major role for Arg111 in maintaining the structure and dynamical properties of type II human cellular retinoic acid binding protein. Related Articles NMR study suggests a major role for Arg111 in maintaining the structure and dynamical properties of type II human cellular retinoic acid binding protein. Biochemistry. 1998 Sep 15;37(37):13021-32 Authors: Wang L, Yan H The solution structure of a site-directed mutant of type-II human cellular retinoic acid binding protein (CRABPII) with Arg111 replaced by methionine (R111M)...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Hydration water molecules of nucleotide-free RNase T1 studied by NMR spectroscopy in
Hydration water molecules of nucleotide-free RNase T1 studied by NMR spectroscopy in solution. Related Articles Hydration water molecules of nucleotide-free RNase T1 studied by NMR spectroscopy in solution. J Biomol NMR. 1998 Jan;11(1):1-15 Authors: Pfeiffer S, Spitzner N, Löhr F, Rüterjans H The hydration of uncomplexed RNase T1 was investigated by NMR spectroscopy at pH 5.5 and 313 K. Two-dimensional heteronuclear NOE and ROE difference experiments were employed to determine the spatial proximity and the residence times of water molecules at...
nmrlearner Journal club 0 11-17-2010 11:06 PM
Investigation of the dynamical properties of water in elastin by deuterium Double Qua
Investigation of the dynamical properties of water in elastin by deuterium Double Quantum Filtered NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Investigation of the dynamical properties of water in elastin by deuterium Double Quantum Filtered NMR. J Magn Reson. 2010 Jul;205(1):86-92 Authors: Sun C, Boutis GS The anisotropic motion of tightly bound waters of hydration in bovine nuchal ligament elastin has been studied by deuterium Double Quantum Filtered (DQF) NMR....
nmrlearner Journal club 0 09-22-2010 05:27 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:29 PM.


Map