BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-24-2014, 04:05 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The role of level anti-crossings in nuclear spin hyperpolarization

The role of level anti-crossings in nuclear spin hyperpolarization


Publication date: August 2014
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 81

Author(s): Konstantin L. Ivanov , Andrey N. Pravdivtsev , Alexandra V. Yurkovskaya , Hans-Martin Vieth , Robert Kaptein

Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3–4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial polarization to other nuclei of choice, either protons or insensitive nuclei such as 13C and 15N. This situation arises primarily in Chemically Induced Dynamic Nuclear Polarization (CIDNP), Para-Hydrogen Induced Polarization (PHIP), and the related Signal Amplification By Reversible Exchange (SABRE). Here we review the recent literature on polarization transfer mechanisms, in particular focusing on the role of Level Anti-Crossings (LACs) therein. So-called “spontaneous” polarization transfer may occur both at low and high magnetic fields. In addition, transfer of spin polarization can be accomplished by using especially designed pulse sequences. It is now clear that at low field spontaneous polarization transfer is primarily due to coherent spin-state mixing under strong coupling conditions. However, thus far the important role of LACs in this process has not received much attention. At high magnetic field, polarization may be transferred by cross-relaxation effects. Another promising high-field technique is to generate the strong coupling condition by spin locking using strong radio-frequency fields. Here, an analysis of polarization transfer in terms of LACs in the rotating frame is very useful to predict which spin orders are transferred depending on the strength and frequency of the B 1 field. Finally, we will examine the role of strong coupling and LACs in magnetic-field dependent nuclear spin relaxation and the related topic of long-lived spin-states.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Exploiting level anti-crossings (LACs) in the rotating frame for transferring spin hyperpolarization
From The DNP-NMR Blog: Exploiting level anti-crossings (LACs) in the rotating frame for transferring spin hyperpolarization Pravdivtsev, A.N., et al., Exploiting level anti-crossings (LACs) in the rotating frame for transferring spin hyperpolarization. Phys Chem Chem Phys, 2014. 16(35): p. 18707-19. http://www.ncbi.nlm.nih.gov/pubmed/24870026
nmrlearner News from NMR blogs 0 08-20-2014 02:06 PM
The role of level anti-crossings in nuclear spin hyperpolarization
From The DNP-NMR Blog: The role of level anti-crossings in nuclear spin hyperpolarization Ivanov, K.L., et al., The role of level anti-crossings in nuclear spin hyperpolarization. Prog. NMR. Spec., 2014. 81(0): p. 1-36. http://www.sciencedirect.com/science/article/pii/S0079656514000454
nmrlearner News from NMR blogs 0 08-18-2014 10:14 PM
Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator
From The DNP-NMR Blog: Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator Karabanov, A., G. Kwiatkowski, and W. Köckenberger, Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator. Mol. Phys., 2014: p. 1-17. http://dx.doi.org/10.1080/00268976.2014.884287
nmrlearner News from NMR blogs 0 07-09-2014 05:07 PM
Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance
From The DNP-NMR Blog: Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance Siaw, T.A., et al., Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance. Phys. Chem. Chem. Phys., 2014. http://dx.doi.org/10.1039/C4CP02013H
nmrlearner News from NMR blogs 0 06-20-2014 08:14 PM
Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments
From The DNP-NMR Blog: Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments Pravdivtsev, A.N., et al., Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments. ChemPhysChem, 2013. 14(14): p. 3327-3331. http://www.ncbi.nlm.nih.gov/pubmed/23959909
nmrlearner News from NMR blogs 0 04-16-2014 11:09 PM
[NMR images] lorentz spin hyperpolarization workshop
http://www.theresonance.com/wp-content/uploads/2011/11/lorentz.jpg 18/03/2014 8:23:29 AM GMT lorentz spin hyperpolarization workshop More...
nmrlearner NMR pictures 0 03-18-2014 08:23 AM
Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules
From The DNP-NMR Blog: Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules Buljubasich, L., et al., Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules. J Magn Reson, 2012. 219(0): p. 33-40. http://www.ncbi.nlm.nih.gov/pubmed/22595295
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
Structure and lipid interactions of an anti-inflammatory and anti-atherogenic 10-residue class G(*) apolipoprotein J peptide using solution NMR.
Structure and lipid interactions of an anti-inflammatory and anti-atherogenic 10-residue class G(*) apolipoprotein J peptide using solution NMR. Structure and lipid interactions of an anti-inflammatory and anti-atherogenic 10-residue class G(*) apolipoprotein J peptide using solution NMR. Biochim Biophys Acta. 2011 Jan;1808(1):498-507 Authors: Mishra VK, Palgunachari MN, Hudson JS, Shin R, Keenum TD, Krishna NR, Anantharamaiah GM The surprising observation that a 10-residue class G(?) peptide from apolipoprotein J, apoJ, possesses...
nmrlearner Journal club 0 03-08-2011 01:40 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:42 PM.


Map