BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-14-2016, 11:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Role of ElectrostaticInteractions in Binding of Peptidesand Intrinsically Disordered Proteins to Their Folded Targets: 2.The Model of Encounter Complex Involving the Double Mutant of thec-Crk N-SH3 Domain and Peptide Sos

Role of ElectrostaticInteractions in Binding of Peptidesand Intrinsically Disordered Proteins to Their Folded Targets: 2.The Model of Encounter Complex Involving the Double Mutant of thec-Crk N-SH3 Domain and Peptide Sos



Biochemistry
DOI: 10.1021/acs.biochem.5b01283



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Dynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy.
Dynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy. Related Articles Dynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy. Chembiochem. 2014 Dec 9; Authors: Baronti L, Erales J, Habchi J, Felli IC, Pierattelli R, Longhi S Abstract We provide an atomic-resolution description...
nmrlearner Journal club 0 12-11-2014 11:22 PM
Role of Electrostatic Interactions in Binding of Peptidesand Intrinsically Disordered Proteins to Their Folded Targets. 1.NMR and MD Characterization of the Complex between the c-Crk N-SH3 Domain and the PeptideSos
Role of Electrostatic Interactions in Binding of Peptidesand Intrinsically Disordered Proteins to Their Folded Targets. 1.NMR and MD Characterization of the Complex between the c-Crk N-SH3 Domain and the PeptideSos http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi500904f/20141007/images/medium/bi-2014-00904f_0012.gif Biochemistry DOI: 10.1021/bi500904f http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/uw_59WsXyRU More...
nmrlearner Journal club 0 10-08-2014 04:17 AM
[NMR paper] The role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between c-Crk N SH3 domain and peptide Sos.
The role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between c-Crk N SH3 domain and peptide Sos. Related Articles The role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between c-Crk N SH3 domain and peptide Sos. Biochemistry. 2014 Sep 10; Authors: Xue Y, Yuwen T, Zhu F, Skrynnikov NR Abstract ...
nmrlearner Journal club 0 09-11-2014 02:54 PM
[NMR paper] NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model.
NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles NMR based solvent exchange experiments to understand the conformational preference of intrinsically disordered proteins using FG-nucleoporin peptide as a model. Biopolymers. 2013 Sep 4; Authors: Heisel KA, Krishnan VV ...
nmrlearner Journal club 0 09-17-2013 11:36 PM
[NMR paper] Role of hydrophobic interactions in the encounter complex formation of plastocyanin and cytochrome f complex revealed by paramagnetic NMR spectroscopy.
Role of hydrophobic interactions in the encounter complex formation of plastocyanin and cytochrome f complex revealed by paramagnetic NMR spectroscopy. Role of hydrophobic interactions in the encounter complex formation of plastocyanin and cytochrome f complex revealed by paramagnetic NMR spectroscopy. J Am Chem Soc. 2013 Apr 29; Authors: Scanu S, Förster J, Ullmann GM, Ubbink M Abstract Protein complex formation is thought to be at least a two-step process, in which the active complex is preceded by the formation of an encounter complex....
nmrlearner Journal club 0 05-01-2013 11:46 AM
Quantitative Analysisof Multisite Protein–LigandInteractions by NMR: Binding of Intrinsically Disordered p53 TransactivationSubdomains with the TAZ2 Domain of CBP
Quantitative Analysisof Multisite Protein–LigandInteractions by NMR: Binding of Intrinsically Disordered p53 TransactivationSubdomains with the TAZ2 Domain of CBP Munehito Arai, Josephine C. Ferreon and Peter E. Wright http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja209936u/aop/images/medium/ja-2011-09936u_0012.gif Journal of the American Chemical Society DOI: 10.1021/ja209936u http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/ak4BxkITHl8
nmrlearner Journal club 0 02-16-2012 05:24 AM
NMR characterization of a Cu(I)-bound peptide model of copper metallochaperones: insights on the role of methionine.
NMR characterization of a Cu(I)-bound peptide model of copper metallochaperones: insights on the role of methionine. NMR characterization of a Cu(I)-bound peptide model of copper metallochaperones: insights on the role of methionine. Chem Commun (Camb). 2011 Jun 14;47(22):6407-9 Authors: Shoshan MS, Shalev DE, Adriaens W, Merkx M, Hackeng TM, Tshuva EY Abstract The first NMR structure of a Cu(I)-bound metallochaperone model with the conserved sequence MT/HCXXC revealed that at pH ~3.0 and ~6.8 Cu(I) binds through one Cys and the Met...
nmrlearner Journal club 0 09-21-2011 03:31 PM
[NMR paper] Rotational-echo double-resonance NMR-restrained model of the ternary complex of 5-eno
Rotational-echo double-resonance NMR-restrained model of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase. Related Articles Rotational-echo double-resonance NMR-restrained model of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase. J Biomol NMR. 2004 Jan;28(1):11-29 Authors: McDowell LM, Poliks B, Studelska DR, O'Connor RD, Beusen DD, Schaefer J The 46-kD enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the condensation of shikimate-3-phosphate (S3P) and phosphoenolpyruvate to form EPSP....
nmrlearner Journal club 0 11-24-2010 09:25 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:34 AM.


Map