Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10Â*Ã? (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and â??PDB worthyâ??. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca.
[NMR paper] A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in (19)F NMR studies of proteins.
A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in (19)F NMR studies of proteins.
A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in (19)F NMR studies of proteins.
J Biomol NMR. 2015 Mar 27;
Authors: Ye L, Larda ST, Frank Li YF, Manglik A, Prosser RS
Abstract
The elucidation of distinct protein conformers or states by fluorine ((19)F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local...
nmrlearner
Journal club
0
03-31-2015 07:17 PM
A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in 19 F NMR studies of proteins
A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in 19 F NMR studies of proteins
Abstract
The elucidation of distinct protein conformers or states by fluorine (19F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA),...
nmrlearner
Journal club
0
03-27-2015 07:43 AM
Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids
Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids
Abstract Unravelling the complex correlation between chemical shifts of 13 C α, 13 C β, 13 C�, 1 H α, 15 N, 1 H N atoms in amino acids of proteins from NMR experiment and local structural environments of amino acids facilitates the assignment of secondary structures of proteins. This is an important impetus for both determining the three-dimensional structure and understanding the biological function of proteins. The previous...
nmrlearner
Journal club
0
11-14-2011 08:45 AM
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings.
J Am Chem Soc. 2011 Apr 5;
Authors: Sgourakis NG, Lange OF, Dimaio F, Andre? I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D
Symmetric protein dimers, trimers, and higher-order cyclic oligomers play key roles in many biological processes. However, structural studies of oligomeric systems by solution NMR...
nmrlearner
Journal club
0
04-07-2011 09:54 PM
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings
Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings
Nikolaos G. Sgourakis, Oliver F. Lange, Frank DiMaio, Ingemar Andre?, Nicholas C. Fitzkee, Paolo Rossi, Gaetano T. Montelione, Ad Bax and David Baker
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja111318m/aop/images/medium/ja-2010-11318m_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja111318m
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
04-06-2011 10:54 AM
4D prediction of protein 1H chemical shifts
4D prediction of protein 1H chemical shifts
Abstract A 4D approach for protein 1H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6â??7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Hα and HN shifts, respectively. However, for individual proteins...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] GENFOLD: a genetic algorithm for folding protein structures using NMR restraints.
GENFOLD: a genetic algorithm for folding protein structures using NMR restraints.
Related Articles GENFOLD: a genetic algorithm for folding protein structures using NMR restraints.
Protein Sci. 1998 Feb;7(2):491-9
Authors: Bayley MJ, Jones G, Willett P, Williamson MP
We report the development and validation of the program GENFOLD, a genetic algorithm that calculates protein structures using restraints obtained from NMR, such as distances derived from nuclear Overhauser effects, and dihedral angles derived from coupling constants. The program...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Application of 1H NMR chemical shifts to measure the quality of protein structures.
Application of 1H NMR chemical shifts to measure the quality of protein structures.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Application of 1H NMR chemical shifts to measure the quality of protein structures.
J Mol Biol. 1995 Apr 7;247(4):541-6
Authors: Williamson MP, Kikuchi J, Asakura T
We have developed a program that can calculate proton NMR chemical shifts for proteins, using a set of co-ordinates provided for example from an X-ray or NMR structure. When...