Abstract The measurement of 1H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metal-chelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the paramagnetic center. Here, we present a novel, disulfide-linked nitroxide spin label, R1p, as an alternative to these flexible labels for PRE studies. When introduced at solvent-exposed α-helical positions in two model proteins, calmodulin (CaM) and T4 lysozyme (T4L), EPR measurements show that the R1p side chain exhibits dramatically reduced internal motion compared to the commonly used R1 spin label (generated by reacting cysteine with the spin labeling compound often referred to as MTSL). Further, only a single nitroxide position is necessary to account for the PREs arising from CaM S17R1p, while an ensemble comprising multiple conformations is necessary for those observed for CaM S17R1. Together, these observations suggest that the nitroxide adopts a single, fixed position when R1p is placed at solvent-exposed α-helical positions, greatly simplifying the interpretation of PRE data by removing the need to account for the intrinsic flexibility of the spin label.
Content Type Journal Article
Category Article
Pages 105-114
DOI 10.1007/s10858-011-9545-x
Authors
Nicolas L. Fawzi, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA 20892-0520, USA
Mark R. Fleissner, Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
Nicholas J. Anthis, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA 20892-0520, USA
Tamás Kálai, Institute of Organic and Medicinal Chemistry, University of Pécs, Szigeti str. 12, 7624 Pécs, Hungary
Kálmán Hideg, Institute of Organic and Medicinal Chemistry, University of Pécs, Szigeti str. 12, 7624 Pécs, Hungary
Wayne L. Hubbell, Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
G. Marius Clore, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MA 20892-0520, USA
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins
Abstract NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional -proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across...
nmrlearner
Journal club
0
12-05-2011 04:07 AM
Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data
Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data
Abstract One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY...
nmrlearner
Journal club
0
06-27-2011 04:30 AM
[NMR paper] Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studi
Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2.
Related Articles Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2.
Biochemistry. 2001 Jun 5;40(22):6559-69
Authors: Flynn PF, Bieber Urbauer RJ, Zhang H, Lee AL, Wand AJ
A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-label
NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins.
Related Articles NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins.
J Biomol NMR. 2000 Aug;17(4):305-10
Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ
We describe the direct observation of side chain-side chain hydrogen bonding interactions in proteins with sensitivity-enhanced NMR spectroscopy. Specifically, the remote correlation between the guanidinium nitrogen 15Nepsilon of arginine 71,...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membra
Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid.
Related Articles Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid.
Protein Sci. 2010 Nov 15;
Authors: Shi P, Wang H, Xi Z, Shi C, Xiong Y, Tian C
Site-specific (19)F chemical shift and side chain relaxation analysis can be applied on large size proteins. Here, one dimensional (19)F spectra and T(1), T(2) relaxation data were acquired...
nmrlearner
Journal club
0
11-17-2010 05:49 PM
[NMR paper] Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics
Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.
Protein Sci. 1995 May;4(5):936-44
Authors: Hammen PK, Scholtz...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR struc
Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR structures.
Related Articles Analysis of side-chain conformational distributions in neutrophil peptide-5 NMR structures.
Biopolymers. 1990 Dec;29(14):1807-22
Authors: Kominos D, Bassolino DA, Levy RM, Pardi A
The side-chain conformations have been analyzed in the antimicrobial peptide, Neutrophil Peptide-5 (NP-5), whose structure was independently generated from nmr-derived distance constraints using a distance geometry algorithm. The side-chain and peptide...
nmrlearner
Journal club
0
08-21-2010 11:04 PM
[NMR paper] Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide
Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide spin label and two-dimensional NMR study.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide spin label and two-dimensional NMR study.
J Biol Chem. 1999 Mar 26;274(13):8411-20
Authors: Yuan T, Ouyang H, Vogel HJ
Binding of calcium to calmodulin (CaM) causes a conformational...