Related ArticlesRetinal Configuration of ppR Intermediates Revealed by Photoirradiation Solid-State NMR and*DFT.
Biophys J. 2018 Jul 03;115(1):72-83
Authors: Makino Y, Kawamura I, Okitsu T, Wada A, Kamo N, Sudo Y, Ueda K, Naito A
Abstract
Pharanois phoborhodopsin (ppR) from Natronomonas pharaonis is a transmembrane photoreceptor protein involved in negative phototaxis. Structural changes in ppR triggered by photoisomerization of the retinal chromophore are transmitted to its cognate transducer protein (pHtrII) through a cyclic photoreaction pathway involving several photointermediates. This pathway is called the photocycle. It is important to understand the detailed configurational changes of retinal during the photocycle. We previously observed one of the photointermediates (M-intermediates) by in*situ photoirradiation solid-state NMR experiments. In this study, we further observed the 13C cross-polarization magic-angle-spinning NMR signals of late photointermediates such as O- and N'-intermediates by illumination with green light (520*nm). Under blue-light (365*nm) irradiation of the M-intermediates, 13C cross-polarization magic-angle-spinning NMR signals of 14- and 20-13C-labeled retinal in the O-intermediate appeared at 115.4 and 16.4 ppm and were assigned to the 13-trans, 15-syn configuration. The signals caused by the N'-intermediate appeared at 115.4 and 23.9 ppm and were assigned to the 13-cis configuration, and they were in an equilibrium state with the O-intermediate during thermal decay of the M-intermediates at -60°C. Thus, photoirradiation NMR studies revealed the photoreaction pathways from the M- to O-intermediates and the equilibrium state between the N'- and O-intermediate. Further, we evaluated the detailed retinal configurations in the O- and N'-intermediates by performing a density functional theory chemical shift calculation. The results showed that the N'-intermediate has a 63° twisted retinal state due to the 13-cis configuration. The retinal configurations of the O- and N'-intermediates were determined to be 13-trans, 15-syn, and 13-cis, respectively, based on the chemical shift values of [20-13C] and [14-13C] retinal obtained by photoirradiation solid-state NMR and density functional theory calculation.
[NMR paper] Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy.
Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy.
Photochem Photobiol Sci. 2015 Sep 26;14(9):1694-702
Authors: Oshima K, Shigeta A,...
nmrlearner
Journal club
0
06-01-2016 11:08 AM
[NMR paper] Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy.
Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif Related Articles Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy.
Angew Chem Int Ed...
[NMR paper] Characterization of the spherical intermediates and fibril formation of hCT in HEPES solution using solid-state 13C-NMR and transmission electron microscopy.
Characterization of the spherical intermediates and fibril formation of hCT in HEPES solution using solid-state 13C-NMR and transmission electron microscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Characterization of the spherical intermediates and fibril formation of hCT in HEPES solution using solid-state 13C-NMR and transmission electron microscopy.
Phys Chem Chem Phys. 2013 Oct 21;15(39):16956-64
Authors: Itoh-Watanabe H, Kamihira-Ishijima M,...
nmrlearner
Journal club
0
04-22-2014 03:54 PM
[NMR paper] Catalytic mechanism of ?-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.
Catalytic mechanism of ?-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.
Catalytic mechanism of ?-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.
Nucleic Acids Res. 2013 Aug 27;
Authors: Barabás O, Németh V, Bodor A, Perczel A, Rosta E, Kele Z, Zagyva I, Szabadka Z, Grolmusz VI, Wilmanns M, Vértessy BG
Abstract
Enzymatic synthesis...
nmrlearner
Journal club
0
08-29-2013 01:53 PM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin [Biophysics and Computational Biology]
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin
Struts, A. V., Salgado, G. F. J., Brown, M. F....
Date: 2011-05-17
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state 2H NMR relaxation allows investigation of light-induced changes in local ps–ns time scale motions of retinal bound to rhodopsin. Site-specific 2H labels were introduced into methyl groups of the...
nmrlearner
Journal club
0
05-17-2011 08:40 PM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Proc Natl Acad Sci U S A. 2011 Apr 28;
Authors: Struts AV, Salgado GF, Brown MF
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation...
nmrlearner
Journal club
0
04-30-2011 12:36 PM
[NMR paper] Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR
Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study.
Related Articles Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study.
Biochemistry. 1998 Jun 2;37(22):8088-96
Authors: Hu JG, Sun BQ, Bizounok M, Hatcher ME, Lansing JC, Raap J, Verdegem PJ, Lugtenburg J, Griffin RG, Herzfeld J
To enforce vectorial proton transport in bacteriorhodopsin (bR), it is necessary that there be a change in molecular structure between deprotonation and reprotonation of the...