Related ArticlesResolution enhancement in NMR spectra by deconvolution with compressed sensing reconstruction.
Chem Commun (Camb). 2020 Nov 04;:
Authors: Kazimierczuk K, Kasprzak P, Georgoulia PS, Mate?ko-Burmann I, Burmann BM, Isaksson L, Gustavsson E, Westenhoff S, Orekhov VY
Abstract
NMR spectroscopy is one of the basic tools for molecular structure elucidation. Unfortunately, the resolution of the spectra is often limited by inter-nuclear couplings. The existing workarounds often alleviate the problem by trading it for another deficiency, such as spectral artefacts or difficult sample preparation and, thus, are rarely used. We suggest an approach using the coupling deconvolution in the framework of compressed sensing (CS) spectra processing that leads to a major increase in resolution, sensitivity, and overall quality of NUS reconstruction. A new mathematical description of the decoupling by deconvolution explains the effects of thermal noise and reveals a relation with the underlying assumption of the CS. The gain in resolution and sensitivity for challenging molecular systems is demonstrated for the key HNCA experiment used for protein backbone assignment applied to two large proteins: intrinsically disordered 441-residue Tau and a 509-residue globular bacteriophytochrome fragment. The approach will be valuable in a multitude of chemistry applications, where NMR experiments are compromised by the homonuclear scalar coupling.
PMID: 33146166 [PubMed - as supplied by publisher]
[NMR paper] Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction.
Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction.
J Biomol NMR. 2017 Jun;68(2):67-77
...
Pitfalls in compressed sensing reconstruction and how to avoid them
Pitfalls in compressed sensing reconstruction and how to avoid them
Abstract
Multidimensional NMR can provide unmatched spectral resolution, which is crucial when dealing with samples of biological macromolecules. The resolution, however, comes at the high price of long experimental time. Non-uniform sampling (NUS) of the evolution time domain allows to suppress this limitation by sampling only a small fraction of the data, but requires sophisticated algorithms to reconstruct omitted data points. A significant group of such algorithms known as...
nmrlearner
Journal club
0
11-19-2016 08:35 PM
Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction
Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction
Abstract
NMR spectroscopy is central to atomic resolution studies in biology and chemistry. Key to this approach are multidimensional experiments. Obtaining such experiments with sufficient resolution, however, is a slow process, in part since each time increment in every indirect dimension needs to be recorded twice, in quadrature. We introduce a modified compressed sensing (CS) algorithm enabling reconstruction of data acquired with...
nmrlearner
Journal club
0
09-22-2016 06:26 AM
High speed 3D overhauser-enhanced MRI using combined b-SSFP and compressed sensing
From The DNP-NMR Blog:
High speed 3D overhauser-enhanced MRI using combined b-SSFP and compressed sensing
Sarracanie, M., et al., High speed 3D overhauser-enhanced MRI using combined b-SSFP and compressed sensing. Magn Reson Med, 2013. 71(2): p. 735-745.
http://www.ncbi.nlm.nih.gov/pubmed/23475813
nmrlearner
News from NMR blogs
0
03-24-2014 11:08 PM
[NMR paper] Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy.
Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy.
Related Articles Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy.
J Magn Reson. 2013 Oct 1;237C:40-48
Authors: Lin EC, Opella SJ
Abstract
We describe the incorporation of non-uniform sampling (NUS) compressed sensing (CS) into oriented sample (OS) solid-state NMR for stationary aligned samples and magic angle spinning (MAS) Solid-state NMR for unoriented 'powder' samples. Both simulated and experimental results indicate that...
nmrlearner
Journal club
0
10-23-2013 03:49 AM
Compressed sensing reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins
Compressed sensing reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins
Abstract Central to structural studies of biomolecules are multidimensional experiments. These are lengthy to record due to the requirement to sample the full Nyquist grid. Time savings can be achieved through undersampling the indirectly-detected dimensions combined with non-Fourier Transform (FT) processing, provided the experimental signal-to-noise ratio is sufficient. Alternatively, resolution and signal-to-noise can be improved within a given experiment time. However, non-FT...
nmrlearner
Journal club
0
07-30-2012 07:42 AM
Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.
Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.
Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.
J Magn Reson. 2011 Apr;209(2):352-8
Authors: Shrot Y, Frydman L
A topic of active investigation in 2D NMR relates to the minimum number of scans required for acquiring this kind of spectra, particularly when these are dictated by sampling rather than by sensitivity considerations. Reductions in this minimum number of scans have...