The characterization of the transition state is a central issue in biophysical studies of protein folding. NMR is a multiprobe measurement technique that provides residue-specific information. Here, we used exchange spectroscopy to characterize the transition state of the two-state slow topological isomerization of a 27-residue lantibiotic peptide. The exchange kinetic rates varied on a per-residue basis, indicating the reduced kinetic cooperativity of the two-state exchange, as well as the...
Pinpoint analysis of a protein in slow exchange using F 1 F 2 -selective ZZ-exchange spectroscopy: assignment and kinetic analysis
Pinpoint analysis of a protein in slow exchange using F 1 F 2 -selective ZZ-exchange spectroscopy: assignment and kinetic analysis
Abstract
ZZ-exchange spectroscopy is widely used to study slow exchange processes in biomolecules, especially determination of exchange rates and assignment of minor peaks. However, if the exchange cross peaks overlap or the populations are skewed, kinetic analysis is hindered. In order to analyze slow exchange protein dynamics under such conditions, here we have developed a new method by combining ZZ-exchange and...
nmrlearner
Journal club
0
04-01-2020 12:01 AM
Solvent-accessibility of discrete residue positions in the polypeptide hormone glucagon by 19 F-NMR observation of 4-fluorophenylalanine
Solvent-accessibility of discrete residue positions in the polypeptide hormone glucagon by 19 F-NMR observation of 4-fluorophenylalanine
Abstract
The amino acid 4-fluoro-l-phenylalanine (4F-Phe) was introduced at the positions of Phe6 and Phe22 in the 29-residue polypeptide hormone glucagon by expressing glucagon in E. coli in the presence of an excess of 4F-Phe. Glucagon regulates blood glucose homeostasis by interaction with the glucagon receptor (GCGR), a class B GPCR. By referencing to the 4F-Phe chemical shifts at varying D2O concentrations, the...
nmrlearner
Journal club
0
05-16-2017 06:53 AM
[NMR paper] NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations.
NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations.
NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations.
J Phys Chem B. 2013 May 2;
Authors: Xia J, Deng NJ, Levy RM
Abstract
Calculating NMR relaxation effects for proteins with dynamics on multiple timescales generally requires very long trajectories based on conventional molecular dynamics simulations. In this report,...
nmrlearner
Journal club
0
05-04-2013 09:18 PM
[NMR paper] Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Angew Chem Int Ed Engl. 2013 Feb 28;
Authors: Vallurupalli P, Kay LE
Abstract
Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical...
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
Abstract A TROSY-selected ZZ-exchange experiment is described for measuring slow chemical exchange rates by monitoring the TROSY component of 15N longitudinal magnetization. Application of the proposed pulse sequence to the cadherin 8 N-terminal extracelluar domain demonstrates that enhanced sensitivity is obtained, compared to a previously described TROSY-detected ZZ-exchange sequence (Sahu et al. J Am Chem Soc 129: 13232â??13237, 2007), by preserving the TROSY effect during the mixing...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments.
The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments.
The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments.
Biophys Chem. 2010 Nov 12;
Authors: Bechinger B, Resende JM, Aisenbrey C
Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with...
nmrlearner
Journal club
0
12-15-2010 12:03 PM
[NMR paper] Real-time NMR kinetic studies provide global and residue-specific information on the
Real-time NMR kinetic studies provide global and residue-specific information on the non-cooperative unfolding of the beta-trefoil protein, interleukin-1beta.
Related Articles Real-time NMR kinetic studies provide global and residue-specific information on the non-cooperative unfolding of the beta-trefoil protein, interleukin-1beta.
J Mol Biol. 2003 May 2;328(3):693-703
Authors: Roy M, Jennings PA
The interleukin-1beta (IL-1beta) structural motif is a beta-trefoil super fold created by six two-stranded beta-hairpins. Turns are thus...