BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-03-2018, 01:00 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Residue Selective 15N CEST and CPMG Experiments for Studies of Millisecond Timescale Protein Dynamics

Residue Selective 15N CEST and CPMG Experiments for Studies of Millisecond Timescale Protein Dynamics

Publication date: Available online 1 June 2018
Source:Journal of Magnetic Resonance

Author(s): Xiaogang Niu, Jienv Ding, Wenbo Zhang, Qianwen Li, Yunfei Hu, Changwen Jin

Proteins are intrinsically dynamic molecules and undergo exchanges among multiple conformations to perform biological functions. The CPMG relaxation dispersion and CEST experiments are two important solution NMR techniques for characterizing the conformational exchange processes on the millisecond timescale. Traditional pseudo 3D 15N CEST and CPMG experiments have certain limitations in their applications. For example, both experiments have low sensitivity for broadened resonances, and the process of optimizing sample conditions and experimental parameters are often time consuming. To overcome these limitations, we herein present a new set of residue selective 15N CEST and CPMG pulse sequences by employing the Hartmann-Hahn cross-polarization transfer of magnetization in both 1D and 2D schemes. Combined with frequency labeling in the indirect dimension using only a small number of increments, the pulse sequences in the 2D scheme can be applied on resonances in overlapped regions of the 1H-15N HSQC spectrum. The pulse sequences were further applied on several proteins, demonstrating their advantages over the traditional CEST and CPMG experiments under specific circumstances.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Probing slow timescale dynamics in proteins using methyl 1 H CEST
Probing slow timescale dynamics in proteins using methyl 1 H CEST Abstract Although 15N- and 13C-based chemical exchange saturation transfer (CEST) experiments have assumed an important role in studies of biomolecular conformational exchange, 1H CEST experiments are only beginning to emerge. We present a methyl-TROSY 1H CEST experiment that eliminates deleterious 1Hâ??1H NOE dips so that CEST profiles can be analyzed robustly to extract methyl proton chemical shifts of rare protein conformers. The utility of the experiment, along with a version that...
nmrlearner Journal club 0 06-24-2017 08:20 PM
[NMR paper] Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST.
Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST. Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST. J Biomol NMR. 2016 Jul 29; Authors: Yuwen T, Sekhar A, Kay LE Abstract
nmrlearner Journal club 0 07-31-2016 09:37 PM
Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST
Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST Abstract Transient excursions of native protein states to functionally relevant higher energy conformations often occur on the μsâ??ms timescale. NMR spectroscopy has emerged as an important tool to probe such processes using techniques such as Carrâ??Purcellâ??Meiboomâ??Gill (CPMG) relaxation dispersion and Chemical Exchange Saturation Transfer (CEST). The extraction of kinetic and...
nmrlearner Journal club 0 07-30-2016 04:57 AM
Triple resonance-based 13 C α and 13 C β CEST experiments for studies of ms timescale dynamics in proteins
Triple resonance-based 13 C α and 13 C β CEST experiments for studies of ms timescale dynamics in proteins Abstract A pair of triple resonance based CEST pulse schemes are presented for measuring 13Cα and 13Cβ chemical shifts of sparsely populated and transiently formed conformers that are invisible to traditional NMR experiments. CEST profiles containing dips at resonance positions of 13Cα or 13Cβ spins of major (ground) and minor (excited) conformers are obtained in a pseudo 3rd dimension that is generated by quantifying modulations of cross...
nmrlearner Journal club 0 10-28-2014 02:42 PM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 11-22-2012 11:49 AM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 10-12-2012 09:58 AM
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes Alexandar L. Hansen, Patrik Lundstrom, Algirdas Velyvis and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210711v/aop/images/medium/ja-2011-10711v_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja210711v http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/jaMjjnA_QTw
nmrlearner Journal club 0 02-03-2012 09:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:01 PM.


Map