BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Representing an ensemble of NMR-derived protein structures by a single structure.

Representing an ensemble of NMR-derived protein structures by a single structure.

Related Articles Representing an ensemble of NMR-derived protein structures by a single structure.

Protein Sci. 1993 Jun;2(6):936-44

Authors: Sutcliffe MJ

The usefulness of representing an ensemble of NMR-derived protein structures by a single structure has been investigated. Two stereochemical properties have been used to assess how a single structure relates to the ensemble from which it was derived, namely the distribution of phi psi torsion angles and the distribution of chi 1 torsion angles. The results show that the minimized average structure derived from the ensemble (a total of 11 ensembles from the Brookhaven Protein Data Bank were analyzed) does not always correspond well with this ensemble, particularly for those ensembles generated with a smaller number of experimentally derived restraints per residue. An alternative method that selects the member of the ensemble which is closest to the "average" of the ensemble has been investigated (a total of 23 ensembles from the Brookhaven Protein Data Bank were analyzed). Although this method selected a structure that on the whole corresponded more closely to the ensemble than did the minimized average structure, this is still not a totally reliable means of selecting a single structure to represent the ensemble. This suggests that it is advisable to study the ensemble as a whole. A study has also been made of the practice of selecting the "best" rather than the most representative member of the ensemble. This too suggests that the ensemble should be studied as a whole. A study of the conformational space occupied by the ensemble also suggests the need to consider the ensemble as a whole, particularly for those ensembles generated with a smaller number of experimentally derived restraints per residue.

PMID: 8318898 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space
Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space Abstract A method is introduced to represent an ensemble of conformers of a protein by a single structure in torsion angle space that lies closest to the averaged Cartesian coordinates while maintaining perfect covalent geometry and on average equal steric quality and an equally good fit to the experimental (e.g. NMR) data as the individual conformers of the ensemble. The single representative â??regmean structureâ?? is obtained by simulated annealing in torsion angle space with the...
nmrlearner Journal club 0 02-25-2012 12:16 AM
[NMR paper] NMR structures of three single-residue variants of the human prion protein.
NMR structures of three single-residue variants of the human prion protein. Related Articles NMR structures of three single-residue variants of the human prion protein. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8340-5 Authors: Calzolai L, Lysek DA, Guntert P, von Schroetter C, Riek R, Zahn R, Wüthrich K The NMR structures of three single-amino acid variants of the C-terminal domain of the human prion protein, hPrP(121-230), are presented. In hPrP(M166V) and hPrP(R220K) the substitution is with the corresponding residue in murine PrP, and in...
nmrlearner Journal club 0 11-19-2010 08:29 PM
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data.
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data. Related Articles CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data. BMC Struct Biol. 2010 Oct 29;10(1):39 Authors: Angyan AF, Szappanos B, Perczel A, Gaspari Z ABSTRACT: BACKGROUND: In conjunction with the recognition of the functional role of internal dynamics of proteins at various timescales, there is an emerging use of dynamic structural ensembles instead of individual conformers. These ensembles are usually substantially...
nmrlearner Journal club 0 11-03-2010 10:44 AM
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data -
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data - 7thSpace Interactive (press release) <img alt="" height="1" width="1" /> CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data 7thSpace Interactive (press release) These ensembles are usually substantially more diverse than conventional NMR ensembles and eliminate the expectation that a single conformer should fulfill ... Read here
nmrlearner Online News 0 10-29-2010 09:32 PM
[NMR paper] An automated approach for clustering an ensemble of NMR-derived protein structures in
An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Related Articles An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng. 1996 Nov;9(11):1063-5 Authors: Kelley LA, Gardner SP, Sutcliffe MJ
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] An approach to protein homology modelling based on an ensemble of NMR structures: app
An approach to protein homology modelling based on an ensemble of NMR structures: application to the Sox-5 HMG-box protein. Related Articles An approach to protein homology modelling based on an ensemble of NMR structures: application to the Sox-5 HMG-box protein. Protein Eng. 1995 Jul;8(7):615-25 Authors: Adzhubei AA, Laughton CA, Neidle S A new approach has been developed to reduce multiple protein structures obtained from NMR structure analysis to a smaller number of representative structures which still reflect the structural diversity of...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Conformational analysis of protein structures derived from NMR data.
Conformational analysis of protein structures derived from NMR data. Related Articles Conformational analysis of protein structures derived from NMR data. Proteins. 1993 Nov;17(3):232-51 Authors: MacArthur MW, Thornton JM A study is presented of the conformational characteristics of NMR-derived protein structures in the Protein Data Bank compared to X-ray structures. Both ensemble and energy-minimized average structures are analyzed. We have addressed the problem using the methods developed for crystal structures by examining the distribution...
nmrlearner Journal club 0 08-22-2010 03:01 AM
Validation of NMR-derived protein structures, Chris Spronk
Here's a good PowerPoint presentation by Chris Spronk (University of Nijmegen, The Netherlands) on the subject of validating NMR protein structure results (adapted by Jurgen F. Doreleijers - University of Wisconsin, Madison, USA) http://tang.bmrb.wisc.edu/~jurgen/presents/Madison/Biochem%20801/NMR_validation_biochem801_2005.ppt The presentation is very well-annotated, so be sure to adjust your view in PowerPoint so that you can see the notes.
jen Educational web pages 0 09-02-2008 05:37 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:51 AM.


Map