BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Relaxation data in NMR structure determination: model calculations for the lysozyme-G

Relaxation data in NMR structure determination: model calculations for the lysozyme-Gd3+ complex.

Related Articles Relaxation data in NMR structure determination: model calculations for the lysozyme-Gd3+ complex.

Proteins. 1991;10(2):117-29

Authors: Sutcliffe MJ, Dobson CM

The effect of including paramagnetic relaxation data as additional restraints in the determination of protein tertiary structures from NMR data has been explored by a systematic series of model calculations. The system used for testing the method was the 2.0 A resolution tetragonal crystal structure of hen egg white lysozyme (129 amino acid residues) and structures were generated using a version of the hybrid "distance geometry-dynamic simulated annealing" procedure. A limited set of 769 NOEs was used as restraints in all the calculations; the strengths of these were categorized into three classes on the basis of distances observed in the crystal structure. The values of 50 phi angles were also restrained on the basis of amide-alpha coupling constants calculated from the X-ray structure. Five sets of 12 structures were determined using differing sets of paramagnetic relaxation data as restraints additional to those involving the NOE and coupling constant data. The paramagnetic relaxation data were modeled on the basis of the distances of defined protons from the crystallographic binding site of Gd3+ in lysozyme. Analysis of the results showed that the relaxation data significantly improved the correspondence between the set of generated structures and the crystal structure, and that the more well defined the relaxation data, the more significant the improvement in the quality of the structures. The results suggest that the inclusion of paramagnetic relaxation restraints could be of significant value for the experimental determination of protein structures from NMR data.

PMID: 1896425 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular assemblies and membrane proteins often diffract weakly and such large systems encroach upon the molecular tumbling limit of solution NMR, new methods are essential to extend structures of such systems to high resolution. Here we present a method that incorporates solid-state NMR restraints alongside...
nmrlearner Journal club 0 09-26-2011 06:42 AM
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data.
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR. 2011 Sep 22; Authors: Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular...
nmrlearner Journal club 0 09-23-2011 05:30 PM
[NMR paper] NMR structure determination of proteins supplemented by quantum chemical calculations
NMR structure determination of proteins supplemented by quantum chemical calculations: detailed structure of the Ca2+ sites in the EGF34 fragment of protein S. Related Articles NMR structure determination of proteins supplemented by quantum chemical calculations: detailed structure of the Ca2+ sites in the EGF34 fragment of protein S. J Biomol NMR. 2005 Feb;31(2):97-114 Authors: Hsiao YW, Drakenberg T, Ryde U We present and test two methods to use quantum chemical calculations to improve standard protein structure refinement by molecular...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Determination of protein rotational correlation time from NMR relaxation data at vari
Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities. Related Articles Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities. J Biomol NMR. 2004 Dec;30(4):431-42 Authors: Korchuganov DS, Gagnidze IE, Tkach EN, Schulga AA, Kirpichnikov MP, Arseniev AS An accurate determination of the overall rotation of a protein plays a crucial role in the investigation of its internal motions by NMR. In the present work, an innovative approach to the...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Limits of NMR structure determination using variable target function calculations: ri
Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study. J Mol Biol. 1997 Feb 21;266(2):400-23 Authors: Pfeiffer S, Karimi-Nejad Y, Rüterjans H Limits of NMR structure determination using multidimensional NMR spectroscopy, variable target function...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Limits of NMR structure determination using variable target function calculations: ri
Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study. J Mol Biol. 1997 Feb 21;266(2):400-23 Authors: Pfeiffer S, Karimi-Nejad Y, Rüterjans H Limits of NMR structure determination using multidimensional NMR spectroscopy, variable target function...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Improved efficiency of protein structure calculations from NMR data using the program
Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. Related Articles Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991 Nov;1(4):447-56 Authors: Güntert P, Wüthrich K A new strategy for NMR structure calculations of proteins with the variable target function method (Braun, W. and Go, N. (1985) J. Mol. Biol., 186, 611) is described, which makes use of...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Improved efficiency of protein structure calculations from NMR data using the program
Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. Related Articles Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991 Nov;1(4):447-56 Authors: Güntert P, Wüthrich K A new strategy for NMR structure calculations of proteins with the variable target function method (Braun, W. and Go, N. (1985) J. Mol. Biol., 186, 611) is described, which makes use of...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:25 PM.


Map