BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,700
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Refinement of the main chain directed assignment strategy for the analysis of 1H NMR

Refinement of the main chain directed assignment strategy for the analysis of 1H NMR spectra of proteins.

Related Articles Refinement of the main chain directed assignment strategy for the analysis of 1H NMR spectra of proteins.

Biophys J. 1991 May;59(5):1101-12

Authors: Wand AJ, Nelson SJ

The underlying basis of the main chain directed (MCD) resonance assignment strategy for the analysis of 1H NMR spectra of proteins is reexamined. The criteria used in the construction of the patterns used in the MCD method have been extended to increase the robustness of the approach to the presence of variable protein secondary structure and significant spectral degeneracy. These criteria have led to the development of several dozen patterns exclusively involving the short distance relationships between main chain amide NH-C alpha-H-C beta H (NAB) J-coupled subspin systems of the amino acid residues. The MCD patterns have been examined for fidelity and frequency of occurrence in a database composed of the high resolution crystal structures of 39 proteins. The analysis has identified several extremely robust patterns, suitable for initiating a hierarchical construction of units of secondary structure based upon a systematic analysis of two-dimensional nuclear Overhauser effect spectra. A formal procedure, suitable for the computer assisted application of the MCD strategy, is developed. This procedure, termed MCDPAT, has been applied to the analysis of the crystal structures of human ubiquitin, T4 lysozyme, and ribonuclease A. It has been found that the MCDPAT procedure is conservative producing no significant errors and is globally successful in correctly identifying the appropriate units of secondary structure contained in these three proteins.

PMID: 1868155 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins Abstract Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing 15N, 13Cā?² and 1HN spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially 15N and 13Cā?² spins offer superior chemical shift dispersion in comparison to 13CĪ± and 13CĪ² spins. However, HN-detected experiments...
nmrlearner Journal club 0 01-29-2011 05:31 AM
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins Abstract An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely 13Cā?²(i), 15N(i), 1HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the ā??out-and-backā?? style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the 13Cā?² dimension and on average 1.6 times higher sensitivity especially for residues in Ī±-helices. Performance of the new experiment...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1.
Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1. Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1. J Phys Chem B. 2010 Dec 10; Authors: Zerbetto M, Buck M, Meirovitch E, Polimeno A
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studi
Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2. Related Articles Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2. Biochemistry. 2001 Jun 5;40(22):6559-69 Authors: Flynn PF, Bieber Urbauer RJ, Zhang H, Lee AL, Wand AJ A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] The NOESY jigsaw: automated protein secondary structure and main-chain assignment fro
The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. Related Articles The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. J Comput Biol. 2000;7(3-4):537-58 Authors: Bailey-Kellogg C, Widge A, Kelley JJ, Berardi MJ, Bushweller JH, Donald BR High-throughput, data-directed computational protocols for Structural Genomics (or Proteomics) are required in order to evaluate the protein products of genes for structure and...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Detection of very weak side chain-main chain hydrogen bonding interactions in medium-
Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy. Related Articles Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy. J Biomol NMR. 2000 May;17(1):79-82 Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ We describe the direct observation of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] NMR analysis of main-chain conformational preferences in an unfolded fibronectin-bind
NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR analysis of main-chain conformational preferences in an unfolded fibronectin-binding protein. J Mol Biol. 1997 Nov 28;274(2):152-9 Authors: Penkett CJ, Redfield C, Dodd I, Hubbard J, McBay DL, Mossakowska DE, Smith RA, Dobson CM, Smith LJ A 130-residue fragment of the Staphylococcus aureus fibronectin-binding protein has...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Analysis of main chain torsion angles in proteins: prediction of NMR coupling constan
Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996 Jan 26;255(3):494-506 Authors: Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM Using a data base of 85 high resolution protein...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:43 PM.


Map