MTCP1 (for Mature-T-Cell Proliferation) was the first gene unequivocally identified in the group of uncommon leukemias with a mature phenotype. The three-dimensional solution structure of the human p8MTCP1 protein encoded by the MTCP1 oncogene has been previously determined by homonuclear proton two-dimensional NMR methods at 600 MHz: it consists of an original scaffold comprising three alpha-helices, associated with a new cysteine motif. Two of the helices are covalently paired by two disulfide bridges, forming an alpha-hairpin which resembles an antiparallel coiled-coil. The third helix is orientated roughly parallel to the plane defined by the alpha-antiparallel motif and appears less well defined. In order to gain more insight into the details of this new scaffold, we uniformly labeled with nitrogen-15 a mutant of this protein (C12A-p8MTCP1) in which the unbound cysteine at position 12 has been replaced by an alanine residue, thus allowing reproducibly high yields of recombinant protein. The refined structure benefits from 211 additional NOEs, extracted from 15N-edited 3D experiments, and from a nearly complete set of phi angular restraints allowing the estimation of the helical content of the structured part of the protein. Moreover, measurements of 15N spin relaxation times and heteronuclear 15N¿1H¿NOEs provided additional insights into the dynamics of the protein backbone. The analysis of the linear correlation between J(0) and J(omega) was used to interpret relaxation parameters. It appears that the apparent relative disorder seen in helix III is not simply due to a lack of experimental constraints, but associated with substantial contributions of sub-nanosecond motions in this segment.
[NMR paper] Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implicati
Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains.
Related Articles Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains.
Protein Sci. 2003 Mar;12(3):510-9
Authors: Stoll R, Renner C, Buettner R, Voelter W, Bosserhoff AK, Holak TA
The melanoma inhibitory activity (MIA) protein is a clinically valuable marker in patients with malignant melanoma as enhanced values diagnose metastatic...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I fro
Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803.
Related Articles Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803.
Biochemistry. 2002 Nov 26;41(47):13902-14
Authors: Barth P, Savarin P, Gilquin B, Lagoutte B, Ochsenbein F
PsaE is a small peripheral subunit of photosystem I (PSI) that is very accessible to the surrounding medium. It plays an essential role in optimizing the interactions with the soluble electron...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) f
Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
Related Articles Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
Biochemistry. 1998 Aug 4;37(31):10881-96
Authors: Feng W, Tejero R, Zimmerman DE, Inouye M, Montelione GT
The major cold-shock protein (CspA) from Escherichia...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Solution structure and backbone dynamics of recombinant Cucurbita maxima trypsin inhi
Solution structure and backbone dynamics of recombinant Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Solution structure and backbone dynamics of recombinant Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy.
Biochemistry. 1996 Feb 6;35(5):1516-24
Authors: Liu J, Prakash O, Cai M, Gong Y, Huang Y, Wen L, Wen JJ, Huang JK, Krishnamoorthi R
The solution structure of recombinant Cucurbita maxima trypsin...
nmrlearner
Journal club
0
08-22-2010 02:27 PM
[NMR paper] Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy.
Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy.
Related Articles Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy.
Biochemistry. 1995 Dec 26;34(51):16608-17
Authors: Broadhurst RW, Hardman CH, Thomas JO, Laue ED
The HMG-box sequence motif (approximately 80 residues) occurs in a number of abundant eukaryotic chromosomal proteins such as HMG1, which binds DNA without sequence specificity, but with "structure specificity", as well as in several sequence-specific transcription factors. HMG1...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Backbone dynamics of trp repressor studied by 15N NMR relaxation.
Backbone dynamics of trp repressor studied by 15N NMR relaxation.
Related Articles Backbone dynamics of trp repressor studied by 15N NMR relaxation.
Biochemistry. 1995 Apr 18;34(15):5212-23
Authors: Zheng Z, Czaplicki J, Jardetzky O
Backbone dynamics of trp repressor, a 25 kDa DNA binding protein, have been studied using 15N relaxation data measured by proton-detected two-dimensional 1H-15N NMR spectroscopy. 15N spin-lattice relaxation time (T1), spin-spin relaxation time (T2), and heteronuclear NOEs were determined for all visible backbone...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectr
Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
Eur J Biochem. 1994 Feb 1;219(3):887-96
Authors: Orekhov VYu , Pervushin KV, Arseniev AS
The backbone dynamics of a uniformly 15N-labelled proteolytic fragment (residues 1-71) of bacteriorhodopsin,...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectr
Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
Eur J Biochem. 1994 Feb 1;219(3):887-96
Authors: Orekhov VYu , Pervushin KV, Arseniev AS
The backbone dynamics of a uniformly 15N-labelled proteolytic fragment (residues 1-71) of bacteriorhodopsin,...