BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-13-2020, 09:18 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Reducing the measurement time of exact NOEs by non-uniform sampling

Reducing the measurement time of exact NOEs by non-uniform sampling

Abstract

We have previously reported on the measurement of exact NOEs (eNOEs), which yield a wealth of additional information in comparison to conventional NOEs. We have used these eNOEs in a variety of applications, including calculating high-resolution structures of proteins and RNA molecules. The collection of eNOEs is challenging, however, due to the need to measure a NOESY buildup series consisting of typically four NOESY spectra with varying mixing times in a single measurement session. While the 2D version can be completed in a few days, a fully sampled 3D-NOESY buildup series can take 10Â*days or more to acquire. This can be both expensive as well as problematic in the case of samples that are not stable over such a long period of time. One potential method to significantly decrease the required measurement time of eNOEs is to use non-uniform sampling (NUS) to decrease the number of points measured in the indirect dimensions. The effect of NUS on the extremely tight distance restraints extracted from eNOEs may be very pronounced. Therefore, we investigated the fidelity of eNOEs measured from three test cases at decreasing NUS densities: the 18.4Â*kDa protein human Pin1, the 4.1Â*kDa WW domain of Pin1 (both in 3D), and a 4.6Â*kDa 14mer RNA UUCG tetraloop (2D). Our results show that NUS imparted negligible error on the eNOE distances derived from good quality data down to 10% sampling for all three cases, but there is a noticeable decrease in the eNOE yield that is dependent upon the underlying sparsity, and thus complexity, of the sample. For Pin1, this transition occurred at roughly 40% while for the WW domain and the UUCG tetraloop it occurred at lower NUS densities of 20% and 10%, respectively. We rationalized these numbers through reconstruction simulations under various conditions. The extent of this loss depends upon the number of scans taken as well as the number of peaks to be reconstructed. Based on these findings, we have created guidelines for choosing an optimal NUS density depending on the number of peaks needed to be reconstructed in the densest region of a 2D or 3D NOESY spectrum.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Non-uniform sampling in biomolecular NMR
Non-uniform sampling in biomolecular NMR Source: Journal of Biomolecular NMR
nmrlearner Journal club 0 06-15-2017 03:37 PM
Joint non-uniform sampling of all incremented time delays for quicker acquisition in protein relaxation studies
Joint non-uniform sampling of all incremented time delays for quicker acquisition in protein relaxation studies Abstract NMR relaxometry plays crucial role in studies of protein dynamics. The measurement of longitudinal and transverse relaxation rates of \(^{15}\) N is the main source of information on backbone motions. However, even the most basic approach exploiting a series of \(^{15}\) ...
nmrlearner Journal club 0 05-16-2017 06:53 AM
[U. of Ottawa NMR Facility Blog] Non-uniform Sampling (NUS)
Non-uniform Sampling (NUS) Collecting 2D or 3D NMR data can be very time consuming. The indirect dimension of a 2D experiment is sampled linearly via the t1 increments in the pulse sequence. An FID must be collected for every single linearly spaced t1 increment. In the interest in collecting 2D or 3D NMR data in a more time efficient manner, a great deal of effort is made towards faster data collection techniques. While some of these methods are based on spatial selectivity, others are based on sparse sampling techniques in the indirect dimensions of nD NMR sequences. One such sparse...
nmrlearner News from NMR blogs 0 05-11-2016 08:04 PM
[NMR paper] Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics.
Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics. Related Articles Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics. J Struct Biol. 2015 Jul 20; Authors: Vögeli B, Olsson S, Riek R, Güntert P Abstract The study of the spatial sampling of biomolecules is essential to understanding the structure-dynamics-function relationship. We have established a protocol for the determination of...
nmrlearner Journal club 0 07-25-2015 01:54 PM
Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics
Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics Publication date: Available online 20 July 2015 Source:Journal of Structural Biology</br> Author(s): Beat Vögeli, Simon Olsson, Roland Riek, Peter Güntert</br> The study of the spatial sampling of biomolecules is essential to understanding the structure-dynamics-function relationship. We have established a protocol for the determination of multiple-state ensembles based on exact measurements of the nuclear Overhauser effect (eNOE). The...
nmrlearner Journal club 0 07-20-2015 09:54 PM
[NMR paper] Towards a true protein movie: A perspective on the potential impact of the ensemble-based structure determination using exact NOEs
Towards a true protein movie: A perspective on the potential impact of the ensemble-based structure determination using exact NOEs Publication date: April 2014 Source:Journal of Magnetic Resonance, Volume 241</br> Author(s): Beat Vögeli , Julien Orts , Dean Strotz , Celestine Chi , Martina Minges , Marielle Aulikki Wälti , Peter Güntert , Roland Riek</br> Confined by the Boltzmann distribution of the energies of the states, a multitude of structural states are inherent to biomolecules. For a detailed understanding of a protein’s function, its entire...
nmrlearner Journal club 0 03-22-2014 01:28 AM
[NMR paper] Time-resolved multidimensional NMR with non-uniform sampling.
Time-resolved multidimensional NMR with non-uniform sampling. Time-resolved multidimensional NMR with non-uniform sampling. J Biomol NMR. 2014 Jan 17; Authors: Mayzel M, Rosenlöw J, Isaksson L, Orekhov VY Abstract Time-resolved experiments demand high resolution both in spectral dimensions and in time of the studied kinetic process. The latter requirement traditionally prohibits applications of the multidimensional experiments, which, although capable of providing invaluable information about structure and dynamics and almost unlimited...
nmrlearner Journal club 0 01-18-2014 11:31 AM
[NMR analysis blog] Non Uniform Sampling (NUS) NMR Processing
Non Uniform Sampling (NUS) NMR Processing Background In the last few years, Non-Uniform Sampling (NUS) has emerged as a very powerful tool to significantly speed up the acquisition of multidimensional NMR experiments due to the fact that only a subset of the usual linearly sampled data in the Nyquist grid is measured. Unfortunately, this fast acquisition modality introduces a new challenge as the normal Fourier Transform will fail and consequently, special processing techniques are required. A number of sophisticated methods have been proposed for reconstructing sparsely sampled 2D...
nmrlearner News from NMR blogs 0 12-21-2013 03:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:08 AM.


Map