Abstract
Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein (13)CO nuclei and membrane lipid or cholesterol (2)H and (31)P nuclei. Specific (13)CO labeling is used to enable unambiguous assignment and (2)H labeling covers a small region of the lipid or cholesterol molecule. The (13)CO-(31)P and (13)CO-(2)H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100kHz (2)H ? pulses is robust with respect to the (2)H quadrupolar anisotropy. The (2)H T1's are comparable to the longer dephasing times (?'s) and this leads to exponential rather than sigmoidal REDOR buildups. The (13)CO-(2)H buildups are well-fitted to A×(1-e(-)(??)) where A and ? are fitting parameters that are correlated as the fraction of molecules (A) with effective (13)CO-(2)H coupling d=3?/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel ? sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-? helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the ? and ? fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell membrane extracts and use of lower temperatures and dynamic nuclear polarization to reduce data acquisition times.
REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins
REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins
Publication date: April 2015
Source:Journal of Magnetic Resonance, Volume 253</br>
Author(s): Lihui Jia , Shuang Liang , Kelly Sackett , Li Xie , Ujjayini Ghosh , David P. Weliky</br>
Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used...
nmrlearner
Journal club
0
03-20-2015 01:48 AM
[NMR paper] Multiple Locations of Peptides in the Hydrocarbon Core of Gel-Phase Membranes Revealed by Peptide (13)C to Lipid (2)H REDOR Solid-State NMR.
Multiple Locations of Peptides in the Hydrocarbon Core of Gel-Phase Membranes Revealed by Peptide (13)C to Lipid (2)H REDOR Solid-State NMR.
Multiple Locations of Peptides in the Hydrocarbon Core of Gel-Phase Membranes Revealed by Peptide (13)C to Lipid (2)H REDOR Solid-State NMR.
Biochemistry. 2014 Dec 22;
Authors: Weliky DP
Abstract
Membrane locations of peptides and proteins are often critical to their functions. Solid-state rotational-echo double-resonance (REDOR) NMR is applied to probe the locations of two peptides via...
nmrlearner
Journal club
0
12-23-2014 12:58 PM
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature
From The DNP-NMR Blog:
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature
Solid-state DNP-NMR are typically performed at cryogenic temperatures and samples, especially bio-macromolecules often require cryo-protection. This is a recent review about sample preparation and cryo-protecting samples to preserve the spectral resolution.
Lee, M. and M. Hong, Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature. J Biomol NMR, 2014....
nmrlearner
News from NMR blogs
0
08-27-2014 02:29 PM
[NMR paper] Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature.
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature.
Related Articles Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature.
J Biomol NMR. 2014 Jul 12;
Authors: Lee M, Hong M
Abstract
Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the...
nmrlearner
Journal club
0
07-13-2014 06:48 PM
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature
Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature
Abstract
Solid-state NMR spectra of membrane proteins often show significant line broadening at cryogenic temperatures. Here we investigate the effects of several cryoprotectants to preserve the spectral resolution of lipid membranes and membrane peptides at temperatures down to ~200Â*K. Trehalose, glycerol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), and polyethylene glycol (PEG), were chosen. These compounds are...
nmrlearner
Journal club
0
07-12-2014 06:07 PM
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR.
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR.
Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR.
Protein Sci. 2011 Feb 22;
Authors: Hong M, Su Y
Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the...
nmrlearner
Journal club
0
02-24-2011 11:04 AM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
Chembiochem. 2005 Sep;6(9):1693-700
Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C
Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
Solid State NMR of membrane peptides and proteins
Solid State NMR of membrane peptides and proteins
Lecture notes on "Solid State NMR of membrane peptides and proteins" by Dr. SK Straus from Univ. of British Columbia
More...