Related ArticlesRedesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography.
J Mol Biol. 2002 Oct 18;323(2):253-62
Authors: Chu R, Takei J, Knowlton JR, Andrykovitch M, Pei W, Kajava AV, Steinbach PJ, Ji X, Bai Y
To test whether it is practical to use phage display coupled with proteolysis for protein design, we used this approach to convert a partially unfolded four-helix bundle protein, apocytochrome b(562), to a stably folded four-helix bundle protein. Four residues expected to form a hydrophobic core were mutated. One residue was changed to Trp to provide a fluorescence probe for studying the protein's physical properties and to partially fill the void left by the heme. The other three positions were randomly mutated. In addition, another residue in the region to be redesigned was substituted with Arg to provide a specific cutting site for protease Arg-c. This library of mutants was displayed on the surface of phage and challenged with protease Arg-c to select stably folded proteins. The consensus sequence that emerged from the selection included hydrophobic residues at only one of the three positions and non-hydrophobic residues at the other two. Nevertheless, the selected proteins were thermodynamically very stable. The structure of a selected protein was characterized using multi-dimensional NMR. All four helices were formed in the structure. Further, site-directed mutagenesis was used to change one of the two non-hydrophobic residues to a hydrophobic residue, which increased the stability of the protein, indicating that the selection result was not based solely on the protein's global stability and that local structural characteristics may also govern the selection. This conclusion is supported by the crystal structure of another mutant that has two hydrophobic residues substituted for the two non-hydrophobic residues. These results suggest that the hydrophobic interactions in the core are not sufficient to dictate the selection and that the location of the cutting site of the protease also influences the selection of structures.
NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554.
NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554.
NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554.
Protein Sci. 2011 Apr 21;
Authors: Atia-Tul-Wahab , Serrano P, Geralt M, Wüthrich K
The solution structure of the hypothetical phage-related protein NP_888769.1 from the gram-negative bacterium Bordetella bronchoseptica contains a well-structured core comprising a five-stranded, antiparallel ?-sheet packed...
nmrlearner
Journal club
0
04-27-2011 04:03 PM
[NMR paper] Characterization of polyacrylamide-stabilized Pfl phage liquid crystals for protein N
Characterization of polyacrylamide-stabilized Pfl phage liquid crystals for protein NMR spectroscopy.
Related Articles Characterization of polyacrylamide-stabilized Pfl phage liquid crystals for protein NMR spectroscopy.
J Biomol NMR. 2002 Jan;22(1):83-7
Authors: Trempe JF, Morin FG, Xia Z, Marchessault RH, Gehring K
A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H
Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H NMR relaxation methods.
Related Articles Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H NMR relaxation methods.
Biochemistry. 2001 Aug 14;40(32):9560-9
Authors: Walsh ST, Lee AL, DeGrado WF, Wand AJ
Understanding how the amino acid sequence of a polypeptide chain specifies a unique, functional three-dimensional structure remains an important goal, especially in the context of the emerging discipline of de novo protein...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking t
NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains.
Related Articles NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains.
J Mol Biol. 2001 Sep 7;312(1):167-75
Authors: Hanaoka S, Nagadoi A, Yoshimura S, Aimoto S, Li B, de Lange T, Nishimura Y
Mammalian telomeres are composed of long tandem arrays of double-stranded telomeric TTAGGG repeats associated with...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] Leptin is a four-helix bundle: secondary structure by NMR.
Leptin is a four-helix bundle: secondary structure by NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Leptin is a four-helix bundle: secondary structure by NMR.
FEBS Lett. 1997 Apr 28;407(2):239-42
Authors: Kline AD, Becker GW, Churgay LM, Landen BE, Martin DK, Muth WL, Rathnachalam R, Richardson JM, Schoner B, Ulmer M, Hale JE
Leptin is a signaling protein that in its mutant forms has been associated with obesity and Type II diabetes. The lack of sequence...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Leptin is a four-helix bundle: secondary structure by NMR.
Leptin is a four-helix bundle: secondary structure by NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Leptin is a four-helix bundle: secondary structure by NMR.
FEBS Lett. 1997 Apr 28;407(2):239-42
Authors: Kline AD, Becker GW, Churgay LM, Landen BE, Martin DK, Muth WL, Rathnachalam R, Richardson JM, Schoner B, Ulmer M, Hale JE
Leptin is a signaling protein that in its mutant forms has been associated with obesity and Type II diabetes. The lack of sequence...
[NMR paper] Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on huma
Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4.
Related Articles Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4.
Biochemistry. 1992 Nov 3;31(43):10431-7
Authors: Redfield C, Boyd J, Smith LJ, Smith RA, Dobson CM
15N NOE, T1, and T2 measurements have been carried out on uniformly 15N-labeled human interleukin-4. Analysis of the results in terms of order parameters (S2) shows that although the helical core of this four-helix-bundle protein...