BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 08:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Redesign of a four-helix bundle protein by phage display coupled with proteolysis and

Redesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography.

Related Articles Redesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography.

J Mol Biol. 2002 Oct 18;323(2):253-62

Authors: Chu R, Takei J, Knowlton JR, Andrykovitch M, Pei W, Kajava AV, Steinbach PJ, Ji X, Bai Y

To test whether it is practical to use phage display coupled with proteolysis for protein design, we used this approach to convert a partially unfolded four-helix bundle protein, apocytochrome b(562), to a stably folded four-helix bundle protein. Four residues expected to form a hydrophobic core were mutated. One residue was changed to Trp to provide a fluorescence probe for studying the protein's physical properties and to partially fill the void left by the heme. The other three positions were randomly mutated. In addition, another residue in the region to be redesigned was substituted with Arg to provide a specific cutting site for protease Arg-c. This library of mutants was displayed on the surface of phage and challenged with protease Arg-c to select stably folded proteins. The consensus sequence that emerged from the selection included hydrophobic residues at only one of the three positions and non-hydrophobic residues at the other two. Nevertheless, the selected proteins were thermodynamically very stable. The structure of a selected protein was characterized using multi-dimensional NMR. All four helices were formed in the structure. Further, site-directed mutagenesis was used to change one of the two non-hydrophobic residues to a hydrophobic residue, which increased the stability of the protein, indicating that the selection result was not based solely on the protein's global stability and that local structural characteristics may also govern the selection. This conclusion is supported by the crystal structure of another mutant that has two hydrophobic residues substituted for the two non-hydrophobic residues. These results suggest that the hydrophobic interactions in the core are not sufficient to dictate the selection and that the location of the cutting site of the protease also influences the selection of structures.

PMID: 12381319 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554.
NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554. NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554. Protein Sci. 2011 Apr 21; Authors: Atia-Tul-Wahab , Serrano P, Geralt M, Wüthrich K The solution structure of the hypothetical phage-related protein NP_888769.1 from the gram-negative bacterium Bordetella bronchoseptica contains a well-structured core comprising a five-stranded, antiparallel ?-sheet packed...
nmrlearner Journal club 0 04-27-2011 04:03 PM
[NMR paper] Characterization of polyacrylamide-stabilized Pfl phage liquid crystals for protein N
Characterization of polyacrylamide-stabilized Pfl phage liquid crystals for protein NMR spectroscopy. Related Articles Characterization of polyacrylamide-stabilized Pfl phage liquid crystals for protein NMR spectroscopy. J Biomol NMR. 2002 Jan;22(1):83-7 Authors: Trempe JF, Morin FG, Xia Z, Marchessault RH, Gehring K A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H
Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H NMR relaxation methods. Related Articles Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H NMR relaxation methods. Biochemistry. 2001 Aug 14;40(32):9560-9 Authors: Walsh ST, Lee AL, DeGrado WF, Wand AJ Understanding how the amino acid sequence of a polypeptide chain specifies a unique, functional three-dimensional structure remains an important goal, especially in the context of the emerging discipline of de novo protein...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking t
NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains. Related Articles NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains. J Mol Biol. 2001 Sep 7;312(1):167-75 Authors: Hanaoka S, Nagadoi A, Yoshimura S, Aimoto S, Li B, de Lange T, Nishimura Y Mammalian telomeres are composed of long tandem arrays of double-stranded telomeric TTAGGG repeats associated with...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Leptin is a four-helix bundle: secondary structure by NMR.
Leptin is a four-helix bundle: secondary structure by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Leptin is a four-helix bundle: secondary structure by NMR. FEBS Lett. 1997 Apr 28;407(2):239-42 Authors: Kline AD, Becker GW, Churgay LM, Landen BE, Martin DK, Muth WL, Rathnachalam R, Richardson JM, Schoner B, Ulmer M, Hale JE Leptin is a signaling protein that in its mutant forms has been associated with obesity and Type II diabetes. The lack of sequence...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Leptin is a four-helix bundle: secondary structure by NMR.
Leptin is a four-helix bundle: secondary structure by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Leptin is a four-helix bundle: secondary structure by NMR. FEBS Lett. 1997 Apr 28;407(2):239-42 Authors: Kline AD, Becker GW, Churgay LM, Landen BE, Martin DK, Muth WL, Rathnachalam R, Richardson JM, Schoner B, Ulmer M, Hale JE Leptin is a signaling protein that in its mutant forms has been associated with obesity and Type II diabetes. The lack of sequence...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] The serum albumin-binding domain of streptococcal protein G is a three-helical bundle
The serum albumin-binding domain of streptococcal protein G is a three-helical bundle: a heteronuclear NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The serum albumin-binding domain of streptococcal protein G is a three-helical bundle: a heteronuclear NMR study. FEBS Lett. 1996 Jan 8;378(2):190-4 Authors: Kraulis PJ, Jonasson P, Nygren PA, Uhlén M, Jendeberg L, Nilsson B, Kördel J Streptococcal protein G (SPG) is a cell surface receptor protein with a...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on huma
Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4. Related Articles Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4. Biochemistry. 1992 Nov 3;31(43):10431-7 Authors: Redfield C, Boyd J, Smith LJ, Smith RA, Dobson CM 15N NOE, T1, and T2 measurements have been carried out on uniformly 15N-labeled human interleukin-4. Analysis of the results in terms of order parameters (S2) shows that although the helical core of this four-helix-bundle protein...
nmrlearner Journal club 0 08-21-2010 11:45 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:24 PM.


Map