Related ArticlesReconstruction of the three-dimensional NMR spectrum of a protein from a set of plane projections.
J Biomol NMR. 2003 Dec;27(4):383-7
Authors: Kupce E, Freeman R
Three-dimensional protein NMR spectra can be obtained significantly faster than by traditional methods by a projection-reconstruction procedure related to X-ray tomography. First, two orthogonal projections are acquired in quick two-dimensional experiments with the evolution parameters t(1) or t(2) set to zero. These projections define a three-dimensional lattice; all cross-peaks must lie on this lattice but not all lattice points are occupied. A third experiment with t(1) and t(2) incremented simultaneously and in a fixed ratio, generates a projection onto a tilted plane and thus establishes the positions of all the cross-peaks unambiguously. This projection-reconstruction technique has been tested on the 500 MHz three-dimensional HNCO spectrum of ubiquitin.
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cαâ??Câ?²/HNâ??N cross-correlated relaxation
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cαâ??Câ?²/HNâ??N cross-correlated relaxation
Abstract Highly precise and accurate measurements of very small NMR cross-correlated relaxation rates, namely those between protein HiNâ??Ni and Ciâ??1αâ??Ciâ??1â?² dipoles, are demonstrated with an error of 0.03 sâ??1 for GB3. Because the projection angles between the two dipole vectors are very close to the magic angle the rates range only from â??0.2 to +0.2 sâ??1. Small changes of the average vector orientations have a dramatic impact on the relative values....
nmrlearner
Journal club
0
06-06-2011 12:53 AM
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation.
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation.
How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar C(?)-C'/H (N)-N cross-correlated relaxation.
J Biomol NMR. 2011 Jun 3;
Authors: Vögeli B
Highly precise and accurate measurements of very small NMR cross-correlated relaxation rates, namely those between protein H (i) (N) -N(i) and C (i-1) (?) -C(i-1)' dipoles, are demonstrated with an error of 0.03*s(-1) for GB3. Because the projection angles...
nmrlearner
Journal club
0
06-04-2011 11:26 AM
FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation
FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation
Abstract Non-uniform sampling (NUS) enables recording of multidimensional NMR data at resolutions matching the resolving power of modern instruments without using excessive measuring time. However, in order to obtain satisfying results, efficient reconstruction methods are needed. Here we describe an optimized version of the Forward Maximum entropy (FM) reconstruction method, which can reconstruct up to three indirect dimensions. For complex datasets, such as NOESY spectra,...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy
Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy.
Related Articles Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy.
J Am Chem Soc. 2004 May 26;126(20):6429-40
Authors: Kupce E, Freeman R
The acquisition of multidimensional NMR spectra can be speeded up by a large factor by a projection-reconstruction method related to a technique used in X-ray scanners. The information from a small number of plane projections is used to recreate the full multidimensional spectrum in the...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] Generalized reconstruction of n-D NMR spectra from multiple projections: application
Generalized reconstruction of n-D NMR spectra from multiple projections: application to the 5-D HACACONH spectrum of protein G B1 domain.
Related Articles Generalized reconstruction of n-D NMR spectra from multiple projections: application to the 5-D HACACONH spectrum of protein G B1 domain.
J Am Chem Soc. 2004 Feb 4;126(4):1000-1
Authors: Coggins BE, Venters RA, Zhou P
Reconstructing multidimensional NMR spectra from 2-D projections significantly reduces the time needed for data collection over conventional methodology. Here, we provide a...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Projection-reconstruction of three-dimensional NMR spectra.
Projection-reconstruction of three-dimensional NMR spectra.
Related Articles Projection-reconstruction of three-dimensional NMR spectra.
J Am Chem Soc. 2003 Nov 19;125(46):13958-9
Authors: Kupce E, Freeman R
When three-dimensional NMR spectra are presented as two stereoscopic images, they create a convincing three-dimensional impression for the viewer. In an extension of this principle, we record plane projections of a three-dimensional spectrum at different angles, and use this limited information to reconstruct the entire spectrum....
nmrlearner
Journal club
0
11-24-2010 09:16 PM
Automated solvent artifact removal and base plane correction of multidimensional NMR
Abstract Strong solvent signals lead to a disappearance of weak protein signals close to the solvent resonance frequency and to base plane variations all over the spectrum. AUREMOL-SSA provides an automated approach for solvent artifact removal from multidimensional NMR protein spectra. Its core algorithm is based on singular spectrum analysis (SSA) in the time domain and is combined with an automated base plane correction in the frequency domain. The performance of the method has been tested on synthetic and experimental spectra including two-dimensional NOESY and TOCSY spectra and a...
nmrlearner
Journal club
0
08-14-2010 04:19 AM
Automatic maximum entropy spectral reconstruction in NMR
Automatic maximum entropy spectral reconstruction in NMR
Mehdi Mobli, Mark W. Maciejewski, Michael R. Gryk and Jeffrey C. Hoch
Journal of Biomolecular NMR; 2007; 39(2) pp 133 - 139
Abstract:
Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time...