Reconstitution of Low-Density Lipoproteins with Fatty Acids for the Targeted Delivery of Drugs into Cancer Cells
Low-density lipoproteins (LDLs) are a class of nanocarriers for the targeted delivery of therapeutics into aberrant cells that overexpress the LDL receptor. A facile procedure is used for reconstituting the hydrophobic core of LDLs with a binary fatty acid mixture. Facilitated by the tumor targeting capability of the apolipoprotein, the reconstituted, drug-loaded LDLs can effectively target cancer cells that overexpress the LDL receptor while showing minor adverse impact on normal fibroblasts. According to a hypothesized mechanism, the reconstituted LDLs can also enable metabolism-triggered drug release while preventing the payloads from lysosomal degradation. This study demonstrates that LDLs reconstructed with fatty acids hold great promise to serve as effective and versatile nanocarriers for targeted cancer therapy.Tumor-targeting nanocarriers: The hydrophobic core of native low-density lipoproteins (LDLs) can be reconstituted with naturally occurring fatty acids (see picture). This process facilitates metabolism-triggered drug release for targeted cancer therapy.
More...