The CKS1At gene product, p10CKS1At from Arabidopsis thaliana, is a member of the cyclin-dependent kinase subunit (CKS) family of small proteins. These proteins bind the cyclin-dependent kinase (CDK)/cyclin complexes and play an essential, but still not precisely known role in cell cycle progression. To solve the structure of p10CKS1At, a protocol was needed to produce the quantity of protein large enough for nuclear magnetic resonance (NMR) spectroscopy. The first attempt to express CKS1At in Escherichia coli under the control of the T7 promoter was not successful. E. coli BL21(DE3) cotransformed with the CKS1At gene and the E. coli argU gene that encoded the arginine acceptor tRNAUCU produced a sufficient amount of p10CKS1At to start the structural study by NMR. Replacement of four rare codons in the CKS1At gene sequence, including a tandem arginine, by highly used codons in E. coli, restored also a high expression of the recombinant protein. Double-isotopic enrichment by 13C and 15N is reported that will facilitate the NMR study. Isotopically labeled p10CKS1At was purified to yield as much as 55 mg from 1 liter of minimal media by a two-step chromatographic procedure. Preliminary results of NMR spectroscopy demonstrate that a full structural analysis using triple-resonance spectra is feasible for the labeled p10CKS1At protein.
NMR assignment and secondary structure of the C-terminal DNA binding domain of Arabidopsis thaliana VERNALIZATION1.
NMR assignment and secondary structure of the C-terminal DNA binding domain of Arabidopsis thaliana VERNALIZATION1.
NMR assignment and secondary structure of the C-terminal DNA binding domain of Arabidopsis thaliana VERNALIZATION1.
Biomol NMR Assign. 2011 May 8;
Authors: Mylne JS, Mas C, Hill JM
VERNALIZATION1 (VRN1) is a multidomain DNA binding protein from Arabidopsis thaliana that is required for the acceleration of flowering time in response to prolonged cold treatment; a physiological process called vernalization. VRN1 is a 39*kDa protein...
nmrlearner
Journal club
0
05-10-2011 05:11 PM
[NMR paper] NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana S
NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein.
Related Articles NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein.
Chembiochem. 2003 Mar 3;4(2-3):171-80
Authors: Isernia C, Bucci E, Leone M, Zaccaro L, Di Lello P, Digilio G, Esposito S, Saviano M, Di Blasio B, Pedone C, Pedone PV, Fattorusso R
Zinc finger domains of the classical type represent the most abundant DNA binding domains in eukaryotic transcription factors. Plant proteins...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] NMR solution structure of ATTp, an Arabidopsis thaliana trypsin inhibitor.
NMR solution structure of ATTp, an Arabidopsis thaliana trypsin inhibitor.
Related Articles NMR solution structure of ATTp, an Arabidopsis thaliana trypsin inhibitor.
Biochemistry. 2002 Oct 15;41(41):12284-96
Authors: Zhao Q, Chae YK, Markley JL
The three-dimensional structure of the precursor form of the Arabidopsis thaliana trypsin inhibitor (ATT(p), GenBank entry Z46816), a 68-residue (approximately 7.5 kDa) rapeseed class proteinase inhibitor, has been determined in solution at pH 5.0 and 25 degrees C by multinuclear magnetic resonance...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
Production of recombinant isotopically labelled peptide by fusion to an insoluble par
Production of recombinant isotopically labelled peptide by fusion to an insoluble partner protein: generation of integrin ?v?6 binding peptides for NMR.
Related Articles Production of recombinant isotopically labelled peptide by fusion to an insoluble partner protein: generation of integrin ?v?6 binding peptides for NMR.
Mol Biosyst. 2010 Oct 18;
Authors: Wagstaff JL, Howard MJ, Williamson RA
The integrin ?v?6 is up-regulated in several cancers and has clinical potential for both tumour imaging and therapy. Peptide ligands have been developed...
nmrlearner
Journal club
0
10-19-2010 04:51 PM
Efficient protein production method for NMR using soluble protein tags with cold shoc
Efficient protein production method for NMR using soluble protein tags with cold shock expression vector
Abstract The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins...
nmrlearner
Journal club
0
09-18-2010 04:53 AM
Efficient protein production method for NMR using soluble protein tags with cold shoc
Efficient protein production method for NMR using soluble protein tags with cold shock expression vector.
Related Articles Efficient protein production method for NMR using soluble protein tags with cold shock expression vector.
J Biomol NMR. 2010 Sep 16;
Authors: Hayashi K, Kojima C
The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To...
nmrlearner
Journal club
0
09-17-2010 04:14 PM
Enhanced production and isotope enrichment of recombinant glycoproteins produced in c
Abstract NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant...
nmrlearner
Journal club
0
08-14-2010 04:19 AM
Breakthrough in protein production for NMR?
The next best thing after cryoprobe and TROSY?
Single Protein Production in Living Cells Facilitated by an mRNA Interferase
Motoo Suzuki,1 Junjie Zhang,1 Mohan Liu,2 Nancy A. Woychik,2 and Masayori Inouye1,*
1 Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854
2 Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854