Related ArticlesRecent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy.
Arch Biochem Biophys. 2017 May 30;:
Authors: Ban D, Smith CA, de Groot BL, Griesinger C, Lee D
Abstract
Protein function can be modulated or dictated by the amplitude and timescale of biomolecular motion, therefore it is imperative to study protein dynamics. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique capable of studying timescales of motion that range from those faster than molecular reorientation on the picosecond timescale to those that occur in real-time. Across this entire regime, NMR observables can report on the amplitude of atomic motion, and the kinetics of atomic motion can be ascertained with a wide variety of experimental techniques from real-time to milliseconds and several nanoseconds to picoseconds. Still a four orders of magnitude window between several nanoseconds and tens of microseconds has remained elusive. Here, we highlight new relaxation dispersion NMR techniques that serve to cover this "hidden-time" window up to hundreds of nanoseconds that achieve atomic resolution while studying the molecule under physiological conditions.
PMID: 28576576 [PubMed - as supplied by publisher]
Recent Advances in Parallel Imaging for MRI
Recent Advances in Parallel Imaging for MRI
Publication date: Available online 2 May 2017
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
Author(s): Jesse Hamilton, Dominique Franson, Nicole Seiberlich</br>
Magnetic Resonance Imaging (MRI) is an essential technology in modern medicine. However, one of its main drawbacks is the long scan time needed to localize the MR signal in space to generate an image. This review article summarizes some basic principles and recent developments in parallel imaging, a class of image reconstruction techniques...
nmrlearner
Journal club
0
05-03-2017 06:47 AM
Recent advances in application of 27Al NMR spectroscopy to materials science
Recent advances in application of 27Al NMR spectroscopy to materials science
Publication date: May 2016
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volumes 94–95</br>
Author(s): Mohamed Haouas, Francis Taulelle, Charlotte Martineau</br>
Valuable information about the local environment of the aluminum nucleus can be obtained through 27Al Nuclear Magnetic Resonance (NMR) parameters like the isotropic chemical shift, scalar and quadrupolar coupling constants, and relaxation rate. With nearly 250 scientific articles per year dealing with 27Al NMR...
nmrlearner
Journal club
0
04-09-2016 03:54 AM
Recent advances in magic angle spinning solid state NMR of membrane proteins
Recent advances in magic angle spinning solid state NMR of membrane proteins
Publication date: Available online 26 July 2014
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
Author(s): Shenlin Wang , Vladimir Ladizhansky</br>
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to...
nmrlearner
Journal club
0
07-27-2014 01:05 AM
[NMR paper] Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research.
Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research.
Related Articles Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research.
Anal Bioanal Chem. 2013 Dec 6;
Authors: Wang G, Zhang ZT, Jiang B, Zhang X, Li C, Liu M
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography are the two main methods for protein three-dimensional structure determination at atomic resolution. According to the protein structures deposited in the...
nmrlearner
Journal club
0
12-07-2013 01:00 PM
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion [Biophysics and Computational Biology]
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion
Meinhold, D. W., Wright, P. E....
Date: 2011-05-31
Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use 15N, , and 13CO NMR R2 relaxation dispersion to investigate spontaneous unfolding and refolding events of native apomyoglobin. Above pH 5.0, dispersion is dominated by processes involving fluctuations of the F-helix region, which...
nmrlearner
Journal club
0
05-31-2011 11:41 PM
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Proc Natl Acad Sci U S A. 2011 May 11;
Authors: Meinhold DW, Wright PE
Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use (15)N, , and (13)CO NMR R(2)...
nmrlearner
Journal club
0
05-13-2011 02:40 PM
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
J Biomol NMR. 2011 Mar 18;
Authors: Bouvignies G, Vallurupalli P, Cordes MH, Hansen DF, Kay LE
A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated 'invisible' protein states that exchange...
nmrlearner
Journal club
0
03-23-2011 05:41 PM
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Abstract A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated â??invisibleâ?? protein states that exchange with a â??visibleâ?? ground state on the millisecond time-scale. The utility of the approach is demonstrated with an application to an I58D mutant of the Pfl6 Cro protein that undergoes exchange between the native, folded state and a cold...