Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t 2) broadband homodecoupling, suppressing the multiplet structure caused by protonâ??proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to 15N, while the former selects a region of the 1H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments.
Real-Time NMR Studies of Electrochemical Double-Layer Capacitors
Real-Time NMR Studies of Electrochemical Double-Layer Capacitors
Hao Wang, Thomas K.-J. Ko?ster, Nicole M. Trease, Julie Se?galini, Pierre-Louis Taberna, Patrice Simon, Yury Gogotsi and Clare P. Grey
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2072115/aop/images/medium/ja-2011-072115_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2072115
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/-UeWTD49pVw
nmrlearner
Journal club
0
11-12-2011 01:40 AM
Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR
Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR
Caroline Haupt, Rica Patzschke, Ulrich Weininger, Stefan Gro?ger, Michael Kovermann and Jochen Balbach
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2010048/aop/images/medium/ja-2011-010048_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2010048
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/nknzYbs0FNE
nmrlearner
Journal club
0
06-30-2011 05:01 AM
Transient enzyme-substrate recognition monitored by real-time NMR.
Transient enzyme-substrate recognition monitored by real-time NMR.
Transient enzyme-substrate recognition monitored by real-time NMR.
J Am Chem Soc. 2011 Jun 10;
Authors: Haupt C, Patzschke R, Weininger U, Gröger S, Kovermann M, Balbach J
Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore protein folding helpers have evolved, which prevent proteins from aggregation and/ or speed up folding processes. In this study we present the...
nmrlearner
Journal club
0
06-15-2011 01:15 PM
[NMR paper] Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic eve
Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds.
Related Articles Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds.
J Am Chem Soc. 2005 Jun 8;127(22):8014-5
Authors: Schanda P, Brutscher B
We demonstrate for different protein samples that 2D 1H-15N correlation NMR spectra can be recorded in a few seconds of acquisition time using a new band-selective optimized flip-angle...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Protein folding studied by real-time NMR spectroscopy.
Protein folding studied by real-time NMR spectroscopy.
Related Articles Protein folding studied by real-time NMR spectroscopy.
Methods. 2004 Sep;34(1):65-74
Authors: Zeeb M, Balbach J
Real-time NMR spectroscopy developed to a generally applicable method to follow protein folding reactions. It combines the access to high resolution data with kinetic experiments allowing very detailed insights into the development of the protein structure during different steps of folding. The present review concentrates mainly on the progress of real-time NMR...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Following protein folding in real time using NMR spectroscopy.
Following protein folding in real time using NMR spectroscopy.
Related Articles Following protein folding in real time using NMR spectroscopy.
Nat Struct Biol. 1995 Oct;2(10):865-70
Authors: Balbach J, Forge V, van Nuland NA, Winder SL, Hore PJ, Dobson CM
The refolding of apo bovine alpha-lactalbumin has been monitored in real time by NMR spectroscopy following rapid in situ dilution of a chemically denatured state. By examining individual resonances in the time-resolved NMR spectra, the native state has been shown to emerge in a cooperative...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] Real-time NMR studies on a transient folding intermediate of barstar.
Real-time NMR studies on a transient folding intermediate of barstar.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Real-time NMR studies on a transient folding intermediate of barstar.
Protein Sci. 1999 Jun;8(6):1286-91
Authors: Killick TR, Freund SM, Fersht AR
The refolding of barstar, the intracellular...