BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-15-2021, 04:25 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Real-Time NMR Spectroscopy for Studying Metabolism.

Real-Time NMR Spectroscopy for Studying Metabolism.

Related Articles Real-Time NMR Spectroscopy for Studying Metabolism.

Angew Chem Int Ed Engl. 2020 02 03;59(6):2304-2308

Authors: Alshamleh I, Krause N, Richter C, Kurrle N, Serve H, Günther UL, Schwalbe H

Abstract
Current metabolomics approaches utilize cellular metabolite extracts, are destructive, and require high cell numbers. We introduce here an approach that enables the monitoring of cellular metabolism at lower cell numbers by observing the consumption/production of different metabolites over several kinetic data points of up to 48â??hours. Our approach does not influence cellular viability, as we optimized the cellular matrix in comparison to other materials used in a variety of in-cell NMR spectroscopy experiments. We are able to monitor real-time metabolism of primary patient cells, which are extremely sensitive to external stress. Measurements are set up in an interleaved manner with short acquisition times (approximately 7â??minutes per sample), which allows the monitoring of up to 15 patient samples simultaneously. Further, we implemented our approach for performing tracer-based assays. Our approach will be important not only in the metabolomics fields, but also in individualized diagnostics.


PMID: 31730253 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Active metabolism unmasks functional protein-protein interactions in real time in-cell NMR.
Active metabolism unmasks functional protein-protein interactions in real time in-cell NMR. Related Articles Active metabolism unmasks functional protein-protein interactions in real time in-cell NMR. Commun Biol. 2020 May 21;3(1):249 Authors: Breindel L, Burz DS, Shekhtman A Abstract Protein-protein interactions, PPIs, underlie most cellular processes, but many PPIs depend on a particular metabolic state that can only be observed in live, actively metabolizing cells. Real time in-cell NMR spectroscopy, RT-NMR, utilizes a...
nmrlearner Journal club 0 05-24-2020 05:50 AM
[NMR paper] In vivo NMR spectroscopy: toward real time monitoring of environmental stress.
In vivo NMR spectroscopy: toward real time monitoring of environmental stress. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles In vivo NMR spectroscopy: toward real time monitoring of environmental stress. Magn Reson Chem. 2015 Sep;53(9):774-9 Authors: Soong R, Nagato E, Sutrisno A, Fortier-McGill B, Akhter M, Schmidt S, Heumann H, Simpson AJ PMID: 25296400
nmrlearner Journal club 0 05-18-2016 09:53 PM
[NMR paper] Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif Related Articles Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy. Angew Chem Int Ed Engl. 2015 Mar 5; Authors: Wen H, An YJ, Xu WJ, Kang KW, Park S Abstract Altered metabolism is a critical part of...
nmrlearner Journal club 0 03-11-2015 09:59 PM
Real-time pure shift 15 N HSQC of proteins: a real improvement in resolution and sensitivity
Real-time pure shift 15 N HSQC of proteins: a real improvement in resolution and sensitivity Abstract Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here....
nmrlearner Journal club 0 03-04-2015 08:56 AM
Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model
From The DNP-NMR Blog: Real-time cardiac metabolism assessed with hyperpolarized acetate in a large-animal model Flori, A., et al., Real-time cardiac metabolism assessed with hyperpolarized acetate in a large-animal model. Contrast Media & Molecular Imaging, 2014: p. n/a-n/a. http://dx.doi.org/10.1002/cmmi.1618
nmrlearner News from NMR blogs 0 01-14-2015 04:22 PM
[NMR paper] Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic eve
Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. Related Articles Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc. 2005 Jun 8;127(22):8014-5 Authors: Schanda P, Brutscher B We demonstrate for different protein samples that 2D 1H-15N correlation NMR spectra can be recorded in a few seconds of acquisition time using a new band-selective optimized flip-angle...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Protein folding studied by real-time NMR spectroscopy.
Protein folding studied by real-time NMR spectroscopy. Related Articles Protein folding studied by real-time NMR spectroscopy. Methods. 2004 Sep;34(1):65-74 Authors: Zeeb M, Balbach J Real-time NMR spectroscopy developed to a generally applicable method to follow protein folding reactions. It combines the access to high resolution data with kinetic experiments allowing very detailed insights into the development of the protein structure during different steps of folding. The present review concentrates mainly on the progress of real-time NMR...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Following protein folding in real time using NMR spectroscopy.
Following protein folding in real time using NMR spectroscopy. Related Articles Following protein folding in real time using NMR spectroscopy. Nat Struct Biol. 1995 Oct;2(10):865-70 Authors: Balbach J, Forge V, van Nuland NA, Winder SL, Hore PJ, Dobson CM The refolding of apo bovine alpha-lactalbumin has been monitored in real time by NMR spectroscopy following rapid in situ dilution of a chemically denatured state. By examining individual resonances in the time-resolved NMR spectra, the native state has been shown to emerge in a cooperative...
nmrlearner Journal club 0 08-22-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:35 AM.


Map