The activation level of RAS can be determined by GTP hydrolysis rate (k(hy)) and GDP-GTP exchange rates (k(ex)). Either impaired GTP hydrolysis or enhanced GDP-GTP exchange causes the aberrant activation of RAS in oncogenic mutants. Therefore, it is important to quantify the k(hy) and k(ex) for understanding the mechanisms of RAS oncogenesis and drug development. Conventional methods have individually measured the k(ex) and k(hy) of RAS. However, within the intracellular environment, GTP...
[NMR paper] Real-time monitoring of the reaction of KRAS G12C mutant specific covalent inhibitor by in vitro and in-cell NMR spectroscopy
Real-time monitoring of the reaction of KRAS G12C mutant specific covalent inhibitor by in vitro and in-cell NMR spectroscopy
KRAS mutations are major drivers of various cancers. Recently, allele-specific inhibitors of the KRAS G12C mutant were developed that covalently modify the thiol of Cys12, thereby trapping KRAS in an inactive GDP-bound state. To study the mechanism of action of the covalent inhibitors in both in vitro and intracellular environments, we used real-time NMR to simultaneously observe GTP hydrolysis and inhibitor binding. In vitro NMR experiments showed that the rate...
[NMR paper] Monitoring Protein-Ligand Interactions in Human Cells by Real-Time Quantitative In-Cell NMR using a High Cell Density Bioreactor
Monitoring Protein-Ligand Interactions in Human Cells by Real-Time Quantitative In-Cell NMR using a High Cell Density Bioreactor
In-cell NMR is a unique approach to observe the structural and dynamic properties of biological macromolecules at atomic resolution directly in living cells. Protein folding, chemical modifications, and conformational changes induced by ligand binding can be observed. Therefore, this method has great potential in the context of drug development. However, the short lifetime of human cells confined in the NMR spectrometer limits the application range of in-cell...
nmrlearner
Journal club
0
03-30-2021 08:29 AM
[NMR paper] Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy.
Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy.
Related Articles Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy.
Pharmaceuticals (Basel). 2017 Apr 15;10(2):
Authors: Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell...
nmrlearner
Journal club
0
04-20-2017 06:14 PM
[NMR paper] In vivo NMR spectroscopy: toward real time monitoring of environmental stress.
In vivo NMR spectroscopy: toward real time monitoring of environmental stress.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles In vivo NMR spectroscopy: toward real time monitoring of environmental stress.
Magn Reson Chem. 2015 Sep;53(9):774-9
Authors: Soong R, Nagato E, Sutrisno A, Fortier-McGill B, Akhter M, Schmidt S, Heumann H, Simpson AJ
PMID: 25296400
nmrlearner
Journal club
0
05-18-2016 09:53 PM
[NMR paper] Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif Related Articles Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
Angew Chem Int Ed Engl. 2015 Mar 5;
Authors: Wen H, An YJ, Xu WJ, Kang KW, Park S
Abstract
Altered metabolism is a critical part of...
nmrlearner
Journal club
0
03-11-2015 09:59 PM
[NMR paper] Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy.
Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy.
Related Articles Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy.
Angew Chem Int Ed Engl. 2014 Jan 23;
Authors: Ma J, McLeod S, Maccormack K, Sriram S, Gao N, Breeze AL, Hu J
Abstract
Disconnections between in vitro responses and those observed in whole cells confound many attempts to design drugs in areas of serious medical need. A method based on 1D (1) H...
nmrlearner
Journal club
0
01-25-2014 02:07 PM
Monitoring Mechanistic Details in the Synthesis of Pyrimidines via Real-Time, Ultrafast Multidimensional NMR Spectroscopy
Monitoring Mechanistic Details in the Synthesis of Pyrimidines via Real-Time, Ultrafast Multidimensional NMR Spectroscopy
Zulay D. Pardo, Gregory L. Olsen, Mari?a Encarnacio?n Ferna?ndez-Valle, Lucio Frydman, Roberto Marti?nez-A?lvarez and Antonio Herrera
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210154g/aop/images/medium/ja-2011-10154g_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja210154g
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/tEFGGh16-DU