Related ArticlesReal-Time In-Cell NMR Reveals the Intracellular Modulation of GTP-Bound Levels of RAS.
Cell Rep. 2020 Aug 25;32(8):108074
Authors: Zhao Q, Fujimiya R, Kubo S, Marshall CB, Ikura M, Shimada I, Nishida N
Abstract
The small guanosine triphosphatase (GTPase) RAS serves as a molecular switch in signal transduction, and its mutation and aberrant activation are implicated in tumorigenesis. Here, we perform real-time, in-cell nuclear magnetic resonance (NMR) analyses of non-farnesylated RAS to measure time courses of the fraction of the active GTP-bound form (fGTP) within cytosol of live mammalian cells. The observed intracellular fGTP is significantly lower than that measured in*vitro for wild-type RAS as well as oncogenic mutants, due to both decrease of the guanosine diphosphate (GDP)-GTP exchange rate (kex) and increase of GTP hydrolysis rate (khy). In*vitro reconstitution experiments show that highly viscous environments promote a reduction of kex, whereas the increase of khy is stimulated by unidentified cytosolic proteins. This study demonstrates the power of in-cell NMR to directly detect the GTP-bound levels of RAS in mammalian cells, thereby revealing that the khy and kex of RAS are modulated by various intracellular factors.
[NMR paper] Real-Time In-Organism NMR Metabolomics Reveals Different Roles of AMP-Activated Protein Kinase Catalytic Subunits.
Real-Time In-Organism NMR Metabolomics Reveals Different Roles of AMP-Activated Protein Kinase Catalytic Subunits.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Real-Time In-Organism NMR Metabolomics Reveals Different Roles of AMP-Activated Protein Kinase Catalytic Subunits.
Anal Chem. 2020 May 11;:
Authors: Nguyen TTM, An YJ, Cha JW, Ko YJ, Lee H, Chung CH, Jeon SM, Lee J, Park S
Abstract
AMP-activated protein kinase (AMPK in human and AAK in C....
nmrlearner
Journal club
0
05-12-2020 08:32 PM
[NMR paper] Real Time In-cell NMR: Ribosome Targeted Antibiotics Modulate Quinary Protein Interactions.
Real Time In-cell NMR: Ribosome Targeted Antibiotics Modulate Quinary Protein Interactions.
Real Time In-cell NMR: Ribosome Targeted Antibiotics Modulate Quinary Protein Interactions.
Biochemistry. 2017 Dec 21;:
Authors: Breindel LM, DeMott CM, Burz DS, Shekhtman A
Abstract
It is not well understood how ribosome antibiotics affect a wide range of biochemical pathways; changes in RNA-mediated protein quinary interactions and consequent activity inside the crowded cytosol may provide one possible mechanism. We developed real-time...
nmrlearner
Journal club
0
12-22-2017 07:55 PM
[NMR paper] Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy.
Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy.
Related Articles Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy.
Pharmaceuticals (Basel). 2017 Apr 15;10(2):
Authors: Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell...
nmrlearner
Journal club
0
04-20-2017 06:14 PM
[NMR paper] Catalytic analysis of APOBEC3G involving real-time NMR spectroscopy reveals nucleic acid determinants for deamination.
Catalytic analysis of APOBEC3G involving real-time NMR spectroscopy reveals nucleic acid determinants for deamination.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Catalytic analysis of APOBEC3G involving real-time NMR spectroscopy reveals nucleic acid determinants for deamination.
PLoS One. 2015;10(4):e0124142
Authors: Kamba K, Nagata T,...
nmrlearner
Journal club
0
04-27-2016 01:51 PM
[NMR paper] Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif Related Articles Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
Angew Chem Int Ed Engl. 2015 Mar 5;
Authors: Wen H, An YJ, Xu WJ, Kang KW, Park S
Abstract
Altered metabolism is a critical part of...
Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.
Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.
Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR.
Nat Chem Biol. 2011 Mar 20;
Authors: Ullrich SJ, Hellmich UA, Ullrich S, Glaubitz C
The simultaneous observation of interdependent reactions within different phases as catalyzed by membrane-bound enzymes is still a challenging task. One such enzyme, the Escherichia coli integral membrane protein diacylglycerol kinase (DGK), is a key player in lipid regulation. It catalyzes the...